
- •Введение в теорию переноса и физику защиты от ионизирующих излучений
- •Содержание
- •Предисловие
- •Введение
- •Глава 1. Виды ионизирующих излучений
- •2.1.2. Токовые характеристики полей излучений.
- •Глава 3. Взаимодействие излучений с веществом
- •§ 3.1. Типы взаимодействий излучений с веществом.
- •3.1.1. Поглощение.
- •3.1.2. Ионизация и возбуждение.
- •3.1.3. Рассеяние.
- •3.1.4. Ядерные реакции.
- •§ 3.2. Эффективные поперечные сечения взаимодействия.
- •3.2.1.Микроскопические и макроскопические эффективные поперечные сечения взаимодействия.
- •3.2.2. Дифференциальные и интегральные эффективные поперечные сечения взаимодействия
- •§ 3.3. Взаимодействия фотонов с веществом.
- •5. Образование фотонейтронов.
- •3.3.1. Фотоэлектрическое поглощение.
- •3.3.2. Комптоновское рассеяние.
- •3.3.3.Процесс образования электрон-позитронных пар.
- •3.3.4. Характеристическое излучение.
- •3.3.5. Когерентное рассеяние.
- •3.3.6.Аннигиляционное излучение.
- •3.3.7. Тормозное излучение.
- •3.3.8. Образование фотонейтронов.
- •3.3.9. Макроскопичекие эффективные поперечные сечения взаимодействия фотонов с веществом.
- •§ 3.4. Взаимодействие нейтронов с веществом
- •3.4.1. Качественная картина взаимодействия нейтронов.
- •3.4.2. Формула Брейта-Вигнера
- •3.4.3. Радиационный захват.
- •3.4.4. Упругое рассеяние.
- •3.4.5. Неупругое рассеяние.
- •3.4.6. Кинематика рассеяния нейтронов
- •3.4.7. Специфика рассеяния тепловых нейтронов
- •3.4.8. Дифференциальные микроскопические поперечные сечения рассеяния
- •3.4.9. Ядерные реакции.
- •3.4.10. Полные эффективные микроскопические поперечные сечения взаимодействия нейтронов с веществом.
- •§ 3.5. Взаимодействия заряженных частиц с веществом.
- •3.5.1.Взаимодействия тяжелых заряженных частиц с веществом.
- •3.5.2. Взаимодействия электронов с веществом.
- •Глава 4. Дозовые характеристики полей излучений.
- •§ 4.1. Основные базисные дозовые характеристики полей излучений
- •4.1.1 Поглощенная доза
- •4.1.2.Керма.
- •4.1.3. Эквивалентная доза.
- •4.1.4. Эффективная доза.
- •4.1.5. Ожидаемая эффективная (эквивалентная) доза.
- •4.1.6. Доза эффективная (эквивалентная) годовая
- •4.1.7. Коллективная эффективная доза
- •4.1.8.Предотвращаемая эффективная доза
- •§ 4.2. Фантомные дозовые характеристики полей излучений
- •4.2.1. Показатель эквивалентной дозы.
- •4.2.2. Амбиентная эквивалентная доза.
- •§ 4.3. Связь между дифференциальными и дозовыми характеристиками полей излучений при внешнем облучении.
- •4.3.1. Фотонное излучение.
- •4.3.2.Заряженные частицы.
- •4.3.3.Нейтроны.
- •§ 4.4. Удельные дозиметрические характеристики полей излучений при внешнем облучении.
- •§ 4.5. Связь между концентрациями радионуклидов в окружающей среде и дозовыми характеристиками полей излучений при внутреннем облучении.
- •4.5.1. Однокамерная модель оценки дозы.
- •4.5.2. Многокамерные модели оценки дозы.
- •4.5.3. Модель «удельной активности».
- •§ 4.6. Связь между концентрациями радионуклидов в окружающей среде и дозовыми характеристиками полей фотонов при внешнем облучении.
- •Глава 5. Характеристики источников ионизирующих излучений
- •§ 5.1. Радионуклиды, как источники излучений
- •5.1.1. Активность и постоянная распада радионуклида
- •5.1.2. Схемы радиоактивных превращений
- •§ 5.2. Радионуклиды, как источники отдельных видов излучений.
- •5.2.1. Источники α-частиц.
- •5.2.2. Источники β-частиц и электронов.
- •Электронный (β-- распад):
- •5.2.3. Источники γ-излучения.
- •5.2.4. Источники нейтронов.
- •Основные характеристики (α,n)-источников нейтронов.
- •239Pu - α –Be (справа) источниками нейтронов.
- •Характеристики (γ,n)-источников нейтронов.
- •§ 5.3. Дозовые характеристики радионуклидов, как источников γ- излучения.
- •5.3.1. Керма – постоянные радионуклидов.
- •5.3.2. Керма – эквивалент радионуклидов.
- •§ 5.4. Установки для получения излучений.
- •5.4.1.Источники заряженных частиц.
- •5.4.2. Источники фотонного излучения.
- •5.4.3. Источники нейтронного излучения.
- •Значения констант формулы 5.28.
- •Доля запаздывающих нейтронов деления на 1 деление
- •Глава 6. Основные принципы нормирования и нормы радиационной безопасности.
- •§ 6.1. Биологические эффекты радиационного воздействия.
- •6.1.1. Детерминированные соматические поражения.
- •6.1.2. Стохастические соматические и генетические поражения.
- •6.1.3. Действие радиации на окружающую среду.
- •§ 6.2. Уровни фонового облучения человека.
- •6.2.1. Уровни естественного радиационного фона.
- •Концентрация естественных радионуклидов в почвах и создаваемые ими мощности поглощенной дозы на поверхности .
- •Среднемировые данные по рациону питания и скорости дыхания
- •Среднегодовые эффективные дозы радиации от различных источников естественного фона, мкЗв/год
- •6.2.2. Технологически повышенный естественный радиационный фон.
- •Концентрации естественных радионуклидов в различных строительных материалах, Бк/г и мощность поглощенной дозы в воздухе, нГр/ч х10
- •6.2.3. Искусственный радиационный фон.
- •Типичные значения эффективных доз пациентов при различных процедурах, мЗв
- •6.2.3. Дозовые нагрузки от всех источников радиационного фона.
- •§ 6.3. Принципы нормирования дозовых пределов.
- •6.3.1.Основные принципы нормирования радиационного фактора воздействия.
- •6.3.2.Концепция приемлемого риска.
- •1) Концепция нулевого риска;
- •2) Беспороговая концепция;
- •3) Концепция приемлемого риска.
- •Классификация источников риска
- •6.3.3. Экономические подходы к нормированию
- •§ 6.4 . Нормы радиационной безопасности. Основные дозовые пределы.
- •6.4.1. Пределы доз.
- •Коэффициенты риска для разных категорий облучаемых лиц, х10-5 (чел-мЗв)
- •6.4.2.Требования по ограничению облучения в условиях радиационной аварии
- •Критерии для принятия неотложных решений в начальном периоде радиационной аварии
- •6.4.3. Принципы расчетов предельно допустимых уровней и потоков ионизирующих излучений.
- •Параметры, используемые в нрб-99/2009 для оценки доз излучения.
- •Среднегодовые допустимые плотности потоков излучений для лиц из персонала при облучении, см-2 с-1
- •Значенияудельных дозовых коэффициентов, предела годового поступления с воздухом и допустимой среднегодовой объемной активности в воздухе отдельных радионуклидов для персонала.
- •6.4.4. Комбинированное воздействие излучений.
- •Рекомендуемая литература
- •Используемые константы и обозначения.
4.1.3. Эквивалентная доза.
Для оценки воздействия излучений на биологическую ткань или орган, а именно это важно для оценки радиационных эффектов в биологических объектах и человеке, используется эквивалентная доза. Она равна для излучения типа R:
НT,R=DT,R · wR (4.3),
где DT,R - поглощенная доза в ткани или органе, создаваемая излучением типа R, которая в соответствии с НРБ-99/2009 определяется как усредненная по ткани или органу поглощенная в них доза, а wR - радиационный взвешивающий коэффициент. Таким образом, при определении эквивалентной дозы в качестве вещества, с которым взаимодействует излучение, принята биологическая ткань или материал органа, и в отличие от «физической поглощенной дозы в ткани» проводится усреднение поглощенной энергии по всему объему органа или ткани, т.е. предполагается равномерное распределение поглощенной энергии по всему объему органа или ткани, и поглощенная доза в ткани или органе определяется по формуле:
(4.4),
где WT – поглощенная энергия в органе или ткани Т , mT - масса органа или ткани Т.
Установлено, что при одной и той же поглощенной дозе в ткани или органе, создаваемой различными видами излучений и частицами разных энергий одного и того же вида излучения, наблюдаемые биологические последствия будут различаться. Для однозначной интерпретации относительной эффективности различных видов излучения в индуцировании биологических эффектов используют взвешивающие радиационные коэффициенты wR, величины которых рекомендуются МКРЗ (Публикация 60 МКРЗ, 1990) и НРБ-99/2009 для различных типов и энергий радиации R, падающей на тело или испускаемой при ядерных превращениях нуклидов внутри тела. Эти коэффициенты приведены в табл. 4.1.
Таблица 4.1.
Радиационные взвешивающие коэффициенты wR
Вид излучения R |
Диапазон энергий |
wR |
Фотоны, электроны, мюоны |
Все энергии |
1 |
Нейтроны |
< 10 кэВ, > 20 МэВ |
5 |
10…100 кэВ, 2…20 МэВ |
10 |
|
0,1…2 МэВ |
20 |
|
Протоны |
> 2 МэВ, кроме протонов отдачи |
5 |
Альфа-частицы, осколки деления, тяжелые ядра |
Все энергии |
20 |
Эквивалентная доза в смешанных полях ионизирующего излучения различных видов и энергий, характеризуемых параметром R, может быть представлена в виде суперпозиции эквивалентных доз, создаваемых отдельными видами излучений:
(4.5)
Рассмотрим биофизическое оправдание введенного радиационного коэффициента wR. Обнаруженная на начальном этапе работ с ионизирующими излучениями зависимость биологических последствий действия разных видов и энергий радиации на биологические объекты при одинаковой поглощенной дозе стала учитываться введением относительной биологической эффективности (ОБЭ) излучения, т.е. все виды излучений по биологическому проявлению сравнивались с действием фотонного излучения. Под ОБЭ из радиобиологических экспериментов понималось отношение поглощенной дозы образцового рентгеновского излучения с граничной энергией 180 кэВ, вызывающей определенный биологический эффект, к поглощенной дозе рассматриваемого вида излучения, приводящей к тому же биологическому эффекту.
Попытка физически объяснить зависимость радиационных последствий воздействия разных видов радиации на биологические объекты при хроническом облучении в малых дозах привела к обнаружению зависимости ОБЭ от полной линейной передачи энергии (ЛПЭ) излучения ткани. Это позволило, определяя ЛПЭ для любого вида излучения, ввести коэффициент, учитывающий радиационные биологические последствия воздействия этого вида излучения, в том числе и при работе в полях смешанного излучения. Этот коэффициент получил название коэффициента качества излучения (КК) и представлял собой регламентированное значение ОБЭ при хроническом облучении в малых дозах (на уровне предельно-допустимых).
В табл.4.2. представлена зависимость коэффициента качества излучения КК от ЛПЭ мягкой биологической ткани стандартного состава.
Таблица 4.2.
Зависимость коэффициента качества КК от ЛПЭ, Зв/Гр
ЛПЭ, эВ/мкм |
0,4 |
3 |
10 |
20 |
47 |
155 |
430 |
870 |
>4300 |
КК |
1 |
1,5 |
3 |
5 |
10 |
20 |
10 |
5 |
1 |
Видно, что для длиннопробежных частиц (фотоны, электроны, позитроны и β-частицы) КК = 1, для короткопробежных он возрастает до 20. В табл.4.1 приведены в виде взвешивающих радиационных коэффициентов wR регламентированные значения ОБЭ и КК.
Единицей измерения эквивалентной дозы является зиверт (Зв): 1 Зв = 1 Гр wR. Внесистемная единица эквивалентной дозы бэр (биологический эквивалент рада) 1 бэр=1 рад · wR (1Зв=100 бэр).
Постоянное пополнение информации по биологическим аспектам воздействия разных видов и энергий излучений приводит к пересмотру регламентированных значений взвешивающих радиационных коэффициентов wR. В частности, анализ имеющихся данных по относительной биологической эффективности различных видов излучения, а также ряд биофизических аспектов, привели к изменениям величин взвешивающих коэффициентов для протонного и нейтронного излучения, причем эти величины согласно Публикации 109 МКРЗ, 2007 г для нейтронного излучения теперь должны задаваться в виде непрерывной функции энергии нейтронов. На рис. 4.2 сравниваются радиационные взвешивающие коэффициенты wR для нейтронов, принятые в 1990 г. с рекомендуемыми в настоящее время.
Рис.4.2. Зависимость wR от энергии нейтронов по данным 1990 г (Публикация 60 МКРЗ) и рекомендуемая c 2007 г. (Публикация 109 МКРЗ)