Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Текст окончат.doc
Скачиваний:
6
Добавлен:
01.03.2025
Размер:
12.15 Mб
Скачать

Глава 4. Дозовые характеристики полей излучений.

Дифференциальные и интегральные характеристики полей излучений определяют поведение рассматриваемого излучения, не учитывая процессы взаимодействия его с веществом, через которое оно распространяется. Для оценки взаимодействия ионизирующей радиации с веществом, в частности, для оценки его воздействия на организм человека, вводятся дозовые характеристики полей излучений. Таким образом, дозовые характеристики учитывают процессы взаимодействия излучения с веществом и позволяют оценивать последствия этого взаимодействия.

В настоящее время используются единицы и терминология, принятые в 1980 г. Международной Комиссией по Радиационным Единицам и измерениям (МКРЕ), одобренные в 1990 г. и 2007 г. Международной Комиссией по Радиационной Защите (МКРЗ) и закрепленные в Российской Федерации Нормами Радиационной Безопасности НРБ-99/2009. В дальнейшем изложении будет использоваться терминология, рекомендуемая этими документами.

Условно вводятся 2 класса дозовых величин:

Базисные, определяемые при отсутствии каких-либо возмущающих поле излучений эффектов. В частности, в качестве возмущающих эффектов может выступать тело человека или имитирующий его фантом. Таким образом, базисные дозовые характеристики поля полностью определяются только описанными выше (гл.2) характеристиками невозмущенного исходного поля излучений.

Фантомные величины используются для оценки дозовых характеристик, отражающих воздействие излучений на человеческий организм. По сравнению с базисными они учитывают изменения характеристик поля при введении в это поле тела человека или имитирующего его фантома. Эти изменения связаны с поглощением излучения вносимым объектом, отражением излучения от него, характером формирования дозы, оказывающей реальное воздействие на организм человека.

§ 4.1. Основные базисные дозовые характеристики полей излучений

4.1.1 Поглощенная доза

Наиболее ярким проявлением взаимодействия излучения с веществом независимо от его вида является переданная или поглощенная в веществе энергия излучения. Основной физической мерой взаимодействия излучения с веществом является средняя энергия, переданная излучением единице массы облучаемого вещества. Величиной, используемой для измерения этой энергии, является поглощенная доза D, определяемая как

(4.1)

где средняя энергия ионизирующего излучения, переданная элементарному объему dV вещества, отнесенная к массе вещества dm в этом объеме. Энергия может быть усреднена по любому определенному объему, и в этом случае средняя доза будет равна полной энергии, переданной объему, деленной на массу этого объема.

Строго говоря, записанное выше определение поглощенной дозы, данное в НРБ-99/2009, соответствует не поглощенной энергии в веществе, а именно переданной. Эти две энергии во многих случаях близки друг с другом по абсолютному значению, однако принципиально различаются в силе того, что не вся переданная энергия поглощается в выделенном элементарном объеме. В частности для фотонов, например, передача энергии веществу характеризуется массовым коэффициентом передачи энергии μtrm, а поглощенная массовым коэффициентом поглощения энергии μenm(см. стр. 52) ,и именно последний используется при вычислении поглощенной дозы.

Единицей измерения поглощенной дозы является грей (Гр): Поглощенная доза в 1 Гр равна средней поглощенной энергии 1 Дж в 1 кг вещества (1 Гр = 1 Дж/кг).

Внесистемной единицей, изымаемой из обращения, но используемой в настоящее время, является рад (radiation absortion dose), равный переданной энергии излучения, при которой в 1 г вещества средняя переданная энергия равна 100 эрг. Таким образом, связь между системными и внесистемными единицами: 1Гр=100 рад.

Поскольку передача энергии происходит в результате взаимодействия любого вида излучения (фотоны, электроны, нейтроны и т. д.) с любым веществом, эта дозовая характеристика является универсальной и может использоваться для любого вида излучения, любого вещества, с которым оно взаимодействует, при любых энергиях излучения и любых абсолютных величинах переданной веществу энергии.

Во многих задачах, особенно при экспериментальных исследованиях ионизирующих излучений в качестве вещества, в котором определяется переданная энергия, используется воздух, и тогда регистрируется поглощенная доза в воздухе.

Под переданной энергией понимается разность между суммарной кинетической энергией излучения, внесенной в рассматриваемый объем, и суммарной кинетической энергией излучения выходящего из него. При этом, если в объеме вещества происходили какие-либо ядерные превращения, то к указанной разности добавляется разница между всей выделенной и затраченной при этих превращениях энергии. В этой связи следует различать переданную энергию и поглощенную в веществе энергию. Последняя представляет собой полную энергию излучения, потерянную при взаимодействии без учета изменения энергий при ядерных превращениях. Как правило, в большинстве задач изменениями энергии при ядерных превращениях можно пренебречь и тогда понятия поглощенной и переданной энергии совпадают. Следует также отметить, что переданной веществу энергии присущи статистические флуктуации, т.е. она является стохастической (вероятностной) величиной, поэтому в определении поглощенной дозы используется средняя переданная энергия как среднее значение этой стохастической величины.