- •Введение
- •Принципы проецирования
- •1. Ортогональное проецирование
- •1.1. Проецирование точки
- •1.1.1. Положение точки в пространстве
- •1.2. Проецирование прямой линии
- •1.2.1. Инвариантные свойства прямой
- •1.2.2. Следы прямой
- •1.2.3. Положение прямой относительно плоскостей проекций
- •1.2.4. Определение действительной величины отрезка прямой общего положения
- •1.2.5. Взаимное расположение прямых в пространстве
- •1.2.6. Теорема о проецировании прямого угла
- •1.3. Плоскость
- •1.3.1. Способы задания плоскости
- •1.3.2. Следы плоскости
- •1.3.3. Положение плоскости в пространстве
- •2. Профильный след плоскости параллелен оси y (pw // oy) и обладает собирательным свойством (a′″ pw).
- •2. Профильный след плоскости параллелен оси z (pw // oz) и обладает собирательным свойством (a′″ pw).
- •1.3.4. Прямая, точка в плоскости
- •1.3.5. Главные линии плоскости
- •1.3.6. Взаимное положение прямой, плоскости и двух плоскостей
- •1.3.7. Пересечение прямой и плоскости частного положения
- •1.3.8. Пересечение плоскостей, одна из которых плоскость частного положения
- •1.4. Методы преобразования проекций
- •1.4.1. Метод замены плоскостей проекций
- •1.4.2. Метод вращения вокруг осей перпендикулярных плоскостям проекций
- •1.5. Геометрические тела
- •1.5.1. Пересечение поверхностей геометрических тел плоскостью
- •1.5.2. Построение разверток поверхностей геометрических тел
- •2. Основы инженерной графики
- •2.1. Выполнение чертежей
- •2.2. Порядок выполнения чертежа детали
- •2.3. Аксонометрические проекции
- •2.3.1. Прямоугольная изометрическая проекция
- •2.3.2. Косоугольная диметрическая проекция
- •2.3.3. Прямоугольная диметрическая проекция
- •3. Техническое рисование
- •3.1. Рисование линий, углов, плоских фигур
- •3.1.1. Деление отрезков на равные части
- •3.1.2. Рисование углов
- •3.1.3. Рисование квадратов
- •3.1.4. Рисование шестиугольников
- •3.1.5. Рисование окружностей
- •3.2. Рисование объемных предметов
- •3.3. Оттенение поверхности
- •3.3.1. Штриховка
- •3.3.2. Шраффировка
- •4. Центральное проецирование. Перспектива
- •4.1. Виды перспективы
- •4.2. Геометрические основы перспективы
- •4.3. Геометрический аппарат линейной перспективы
- •4.4. Выбор точки зрения
- •4.5. Перспектива точки
- •4.5.1. Случаи расположения точки в пространстве
- •4.6. Перспектива прямой линии
- •4.6.1. Характерные точки прямой
- •4.6.2. Частные случаи положения прямых
- •4.6.3. Прямые особого положения
- •4.6.4. Взаимное положение прямых
- •4.6.5. Частные случаи расположения параллельных прямых
- •4.6.6. Построение перспективы параллельных прямых при недоступной точке схода
- •4.7. Построение перспективы плоских фигур, заданных на эпюре
- •4.7.1. Построение перспективы прямых и плоских многоугольников, заданных на эпюре
- •4.7.2. Построение перспективы окружности, заданной в совмещенной предметной плоскости
- •4.8. Перспективные масштабы
- •4.8.1. Масштаб ширины
- •4.8.2. Масштаб высоты
- •4.8.3. Масштаб глубины
- •4.8.4. Перспективный делительный масштаб
- •4.8.5. Построение перспективы окружности, принадлежащей вертикальной плоскости в случайном повороте к картине
- •4.9. Перспектива пространственных объектов
- •4.9.1. Выбор положения точки зрения
- •4.9.2. Фронтальная перспектива
- •4.9.3. Угловая перспектива
- •4.9.4. Построение перспективы композиции геометрических тел
- •4.10. Способы задания положения объектов в пространстве
- •4.10.1. Метод следа луча (радиальный метод)
- •4.10.2. Метод точек схода (метод архитекторов)
- •5. Геометрические основы теории теней
- •5.1. Тени в ортогональных проекциях
- •5.1.1. Построение теней на плоскости проекций h и V
- •5.1.2. Тени от прямых частного положения
- •5.1.3. Тени от плоских фигур
- •5.1.4. Падающие тени от геометрических тел
- •5.1.5. Построение теней, падающих от объектов на поверхности тел
- •5.1.6. Построение падающих теней от выступающих частей зданий (тени от карнизов, фронтонов и т. П. На фасадах, тени в нишах)
- •5.2. Тени на аксонометрических проекциях
- •5.3. Построение теней в перспективе
- •5.3.1. Источники света
- •5.3.2. Правило построения теней (при любом освещении)
- •5.3.3. Построение теней от геометрических тел
- •5.3.4. Построение падающих теней от объектов, освещенных двумя источниками освещения
- •3.5.5. Построение теней, падающих на различные поверхности
- •Библиографический список
4.8.3. Масштаб глубины
Масштаб глубины – это масштаб, построенный на прямых, перпендикулярных картине (l ┴ K). Масштаб глубины служит для измерения действительных величин отрезков прямых, перпендикулярных картине.
В качестве измерительных точек используются дистанционные точки D1 и D2.
Геометрический смысл этого построения заключается в том, что прямо в картинной плоскости нужно построить отрезок, равный действительной величине измеряемого отрезка прямой, перпендикулярной картине. Это равнозначно построению в пространстве равнобедренного прямоугольного треугольника с катетами, равными действительной величине отрезка. Гипотенуза такого треугольника будет расположена под углом 450 к картине, а перспектива такой гипотенузы будет иметь бесконечно удаленную точку в дистанционной точке D.
Задача
На прямой m отложить отрезок АВ = 1 м и отрезок ВС = 2 м.
Решение (рис. 160):
Из измерительной точки D1 провести измерительный луч через перспективу основания точки AK ≡ A′K до пересечения с основанием картины (картинный след – 10).
Отложить на основании картины отрезок, равный действительной величине AB, – 1 условный метр. Из полученной точки 20 провести измерительный луч в точку D1. Точка пересечения этого луча с перспективой основания прямой mK ≡ m′K определит положение перспективы основания точки BK ≡ B′K.
Аналогично построить перспективу точки CK ≡ C′K с помощью измерительного луча D130.
Задача
Определить действительную величину отрезка АВ.
Решение (рис. 161):
Через дистанционную точку D1 и перспективы оснований точек AK ≡ A′K и BK ≡ B′K провести измерительные лучи с картинными следами соответственно 10 и 20. Отрезок между этими лучами на основании картины и покажет действительную величину отрезка AB.
Если размера рамки картины недостаточно для нанесения дистанционной точки, можно воспользоваться так называемыми дробными дистанционными точками. То есть расстояние от главной точки картины до дробной дистанционной точки кратно в разы меньше расстояния до дистанционной точки (например: PD/2 = PD : 2). В этом случае и расстояние между картинными следами измерительных лучей также нужно откладывать пропорционально меньше, например, 1020 = 2 * 3040 (рис. 161).
Задача
Измерить высоту столбика АВ и расстояние от столбика до картины.
Решение (рис 162):
В качестве измерительной точки для определения высоты отрезка можно было бы выбрать произвольную точку схода F, но, поскольку требуется еще и определить расстояние до картины, в качестве измерительной точки выберем главную точку картины Р. Проведем измерительные лучи из главной точки картины P через точки A и B. Отрезок 101′0 равен действительной величине отрезка AB.
Из измерительной точки D1 через перспективу основания точки A′K проведем измерительный луч с картинным следом 20. Отрезок 1020 равен действительной величине расстояния от основания столбика AB до картины.
Если изображение на картине загружено линиями и неудобно проводить измерительные лучи, пересекая перспективное изображение объекта, можно воспользоваться вспомогательной шкалой высот, построенной из произвольной точки схода произвольных параллельных горизонтальных прямых F (рис. 162). Возможность использования такой вспомогательной шкалы высот обуславливается тем, что размеры всех объектов, одинаково удаленных вглубь картины, искажаются одинаково, вне зависимости от их смещения вправо или влево от главной линии картины. Следовательно, измерив любой отрезок, удаленный вглубь так же как и искомый, сможем определить высоту нужного нам отрезка.
