
- •Курс лекций По дисциплине: «Системное программное обеспечение»
- •Основные определения
- •Эволюция операционных систем
- •Появление первых операционных систем
- •Появление мультипрограммных операционных систем для мэйнфреймов
- •Операционные системы и глобальные сети
- •Операционные системы мини-компьютеров и первые локальные сети
- •Развитие операционных систем в 80-е годы
- •Особенности современного этапа развития операционных систем
- •Назначение и функции операционной системы
- •Операционные системы для автономного компьютера
- •Ос как виртуальная машина
- •Ос как система управления ресурсами
- •Функциональные компоненты операционной системы автономного компьютера
- •Управление процессами
- •Управление памятью
- •Управление файлами и внешними устройствами
- •Защита данных и администрирование
- •Интерфейс прикладного программирования
- •Пользовательский интерфейс
- •Требования к современным операционным системам
- •Архитектура операционной системы
- •Ядро и вспомогательные модули ос
- •Ядро в привилегированном режиме
- •Многослойная структура ос
- •Типовые средства аппаратной поддержки ос
- •Микроядерная архитектура
- •Концепция
- •Преимущества и недостатки микроядерной архитектуры
- •Процессы и потоки
- •Мультипрограммирование
- •Мультипрограммирование в системах пакетной обработки
- •Мультипрограммирование в системах разделения времени
- •Мультипрограммирование в системах реального времени
- •Мультипроцессорная обработка
- •Понятия «процесс» и «поток»
- •Операции над процессами
- •Планирование и диспетчеризация потоков
- •Состояния потока
- •Вытесняющие и невытесняющие алгоритмы планирования
- •Алгоритмы планирования, основанные на квантовании
- •Алгоритмы планирования, основанные на приоритетах
- •Смешанные алгоритмы планирования
- •Планирование в системах реального времени
- •Мультипрограммирование на основе прерываний
- •Назначение и типы прерываний
- •Механизм прерываний
- •Диспетчеризация и приоритезация прерываний в ос
- •Функции централизованного диспетчера прерываний на примере Windows nt
- •Системные вызовы
- •Синхронизация процессов и потоков
- •Цели и средства синхронизации
- •Необходимость синхронизации и гонки
- •Критическая секция
- •Блокирующие переменные
- •Семафоры
- •Синхронизирующие объекты ос
- •Сигналы
- •Управление памятью
- •Функции ос по управлению памятью
- •Типы адресов
- •Алгоритмы распределения памяти
- •Распределение памяти фиксированными разделами
- •Распределение памяти динамическими разделами
- •Перемещаемые разделы
- •Свопинг и виртуальная память
- •Страничное распределение
- •Сегментное распределение
- •Сегментно-страничное распределение
- •Разделяемые сегменты памяти
Алгоритмы планирования, основанные на приоритетах
Другой важной концепцией, лежащей в основе многих вытесняющих алгоритмов планирования, является приоритетное обслуживание. Приоритетное обслуживание предполагает наличие у потоков некоторой изначально известной характеристики — приоритета, на основании которой определяется порядок их выполнения. Приоритет — это число, характеризующее степень привилегированности потока при использовании ресурсов вычислительной машины, в частности процессорного времени: чем выше приоритет, тем выше привилегии, тем меньше времени будет проводить поток в очередях.
Приоритет может выражаться целым или дробным, положительным или отрицательным значением. В некоторых ОС принято, что приоритет потока тем выше, чем больше (в арифметическом смысле) число, обозначающее приоритет. В других системах, наоборот, чем меньше число, тем выше приоритет.
В большинстве операционных систем, поддерживающих потоки, приоритет потока непосредственно связан с приоритетом процесса, в рамках которого выполняется данный поток. Приоритет процесса назначается операционной системой при его создании. Значение приоритета включается в описатель процесса и используется при назначении приоритета потокам этого процесса. При назначении приоритета вновь созданному процессу ОС учитывает, является этот процесс системным или прикладным, каков статус пользователя, запустившего процесс, было ли явное указание пользователя на присвоение процессу определенного уровня приоритета. Поток может быть инициирован не только по команде пользователя, но и в результате выполнения системного вызова другим потоком. В этом случае при назначении приоритета новому потоку ОС должна принимать во внимание значение параметров системного вызова.
Во многих ОС предусматривается возможность изменения приоритетов в течение жизни потока. Изменение приоритета могут происходить по инициативе самого потока, когда он обращается с соответствующим вызовом к операционной системе, или по инициативе пользователя, когда он выполняет соответствующую команду. Кроме того, ОС сама может изменять приоритеты потоков в зависимости от ситуации, складывающейся в системе. В последнем случае приоритеты называются динамическими в отличие от неизменяемых, фиксированных, приоритетов.
От того, какие приоритеты назначены потокам, существенно зависит эффективность работы всей вычислительной системы. В современных ОС во избежание разбалансировки системы, которая может возникнуть при неправильном назначении приоритетов, возможности пользователей влиять на приоритеты процессов и потоков стараются ограничивать. При этом обычные пользователи, как правило, не имеют права повышать приоритеты своим потокам, это разрешено делать (да и то в определенных пределах) только администраторам. В большинстве же случаев ОС присваивает приоритеты потокам по умолчанию.
Существуют две разновидности приоритетного планирования: обслуживание с относительными приоритетами и обслуживание с абсолютными приоритетами.
В обоих случаях выбор потока на выполнение из очереди готовых осуществляется одинаково: выбирается поток, имеющий наивысший приоритет. Однако проблема определения момента смены активного потока решается по-разному. В системах с относительными приоритетами активный поток выполняется до тех пор, пока он сам не покинет процессор, перейдя в состояние ожидания (или же произойдет ошибка, или поток завершится). На рис. 4.10, а показан граф состояний потока в системе с относительными приоритетами.
В системах с абсолютными приоритетами выполнение активного потока прерывается кроме указанных выше причин, еще при одном условии: если в очереди готовых потоков появился поток, приоритет которого выше приоритета активного потока. В этом случае прерванный поток переходит в состояние готовности (рис. 4.10, б).
В системах, в которых планирование осуществляется на основе относительных приоритетов, минимизируются затраты на переключения процессора с одной работы на другую. С другой стороны, здесь могут возникать ситуации, когда одна задача занимает процессор долгое время. Ясно, что для систем разделения времени и реального времени такая дисциплина обслуживания не подходит: интерактивное приложение может ждать своей очереди часами, пока вычислительной задаче не потребуется ввод-вывод. А вот в системах пакетной обработки (в том числе известной ОС OS/360) относительные приоритеты используются широко.
Рис. 4.10. Графы состояний потоков в системах с относительными и абсолютными приоритетами
В системах с абсолютными приоритетами время ожидания потока в очередях может быть сведено к минимуму, если ему назначить самый высокий приоритет. Такой поток будет вытеснять из процессора все остальные потоки (кроме потоков, имеющих такой же наивысший приоритет). Это делает планирование на основе абсолютных приоритетов подходящим для систем управления объектами, в которых важна быстрая реакция на событие.