- •Содержание
- •Введение
- •Глава I. Общие сведения о радиоактивности и ионизирующем излучении
- •1. Понятие об ионизирующем излучении
- •2. Радиоактивный (ядерный) распад
- •3. Закон радиоактивного распада
- •Радиоактивных атомов от времени для изотопа с периодом полураспада т1/2
- •4. Ядерные превращения
- •5. Торможение заряженных частиц в веществе
- •6. Характеристика ионизирующих излучений
- •Глава II. Дозы ионизирующих излучений и их измерение
- •1. Дозы ионизирующего излучения
- •2. Принципы работы детекторов ионизирующих излучений
- •3. Классификация и назначение дозиметрических приборов
- •Классификация и назначение дозиметрических приборов
- •Глава III. Действие радиации на организм
- •1. Взаимодействие ионизирующего излучения с веществом
- •В результате различных процессов взаимодействия, %
- •2. Биологическое действие ионизирующих излучений
- •3. Последствия воздействия радиации на организм
- •Глава IV. Источники ионизирующих излучений
- •1. Классификация источников ионизирующих излучений
- •2. Космическое излучение
- •3. Земное (терригенное) излучение
- •4. Радиация в медицине
- •5. Атомная энергетика
- •5.1. Предприятия атомной энергетики
- •5.1.2. Ядерный топливный цикл
- •5.2. Радиационная нагрузка предприятий атомной
- •6. Радиоактивные осадки и другие источники
- •7. Характеристика радиоактивных загрязнений
- •Глава V. Защита от ионизирующего излучения в условиях повседневной деятельности
- •1. Принципы обеспечения радиационной безопасности
- •2. Методы защиты при работе
- •3. Средства защиты от действия ионизирующих излучений
- •4. Службы радиационной безопасности
- •Глава VI. Радиационные аварии
- •1. Общая характеристика аварий на радиационно опасных
- •2. Аварии на атомных электростанциях
- •2.1. Типовые и нетиповые нарушения работы на аэс
- •2.2. Крупные и сверхкрупные аварии на аэс
- •2.3. Вероятность аварий на аэс и их последствия
- •3. Радиоактивное заражение местности вследствие аварии
- •4. Расчет параметров зоны радиационного загрязнения
- •5. Прогнозирование количества пораженного персонала и
- •6. Катастрофа на Чернобыльской аэс
- •Физико-математического моделирования
- •7. Что сейчас происходит на Чернобыльской аэс?
- •Глава VII. Защита населения и территорий в случае радиационной аварии
- •1. Принципы обеспечения безопасности
- •2. Методы защиты населения в случае радиационной аварии
- •3. Средства защиты населения в случае аварии
- •3.1. Средства коллективной защиты
- •3.1.1. Назначение и классификация
- •3.1.2. Убежища
- •3.1.3. Противорадиационные укрытия (пру)
- •3.1.4. Простейшие укрытия
- •3.2. Средства индивидуальной защиты (сиз)
- •3.2.1. Сущность индивидуальной защиты
- •3.2.2. Средства индивидуальной защиты органов дыхания
- •3.2.3. Средства индивидуальной защиты кожи
- •3.3. Средства фармакологической защиты
- •3.3.1. Йодная профилактика
- •3.3.2. Применение радиопротекторов
- •3.3.3. Применение неспецифических препаратов
- •4. Мероприятия по защите населения и территорий
- •4.1. Критерии противорадиационных мероприятий на
- •4.2. Экстренная эвакуация населения
- •4.3. Оказание медицинской помощи облученным
- •4.3.1. Первичные признаки радиационных поражений
- •4.3.2. Само- и взаимопомощь при радиационном поражении
- •4.4. Режимы радиационной защиты населения
- •4.5. Герметизация помещений
- •4.6. Санитарная обработка кожных покровов
- •4.7. Санитарно-пропускной режим
- •4.8. Дезактивация
- •4.8.1. Специальная обработка
- •4.8.2. Показатели эффективности дезактивационных работ
- •4.8.3. Способы дезактивации
- •4.8.4. Стадии процесса дезактивации
- •4.8.5. Незамкнутый и замкнутый циклы дезактивации
- •Дезактивации с незамкнутым (а) и замкнутым (б) циклом
- •4.8.6. Особенности проведения дезактивационных
- •4.8.7. Особенности дезактивации различных объектов
- •4.8.8. Дезактивация воды и продуктов питания
- •4.8.9. Меры безопасности при проведении работ по
- •Глава VII. Действия населения в случае радиационной аварии
- •1. Оповещение
- •2. Действия населения по сигналу оповещения
- •3. Подготовка к эвакуации и эвакуация
- •4. Проживание на загрязненной местности
- •5. Особенности использования продуктов питания
- •Глава VIII. Проблемы изучения раздела «Радиационная безопасность» в школе
- •2. Чернобыльские уроки
- •3. Использование воспоминаний свидетелей катастрофы
- •4. Примеры обсуждения воспоминаний очевидцев
- •Библиографический список
- •Глава I. Общие положения
- •Глава II. Полномочия рф и субъектов рф в области обеспечения радиационной безопасности
- •Глава III. Государственное управление в области обеспечения радиационной безопасности, государственные надзор и контроль за ее обеспечением
- •Глава IV. Общие требования к обеспечению радиационнной безопасности
- •Глава V. Обеспечение радиационной безопасности при радиационной аварии
- •Глава VI. Права и обязанности граждан и общественных объединений в области обеспечения радиационной безопасности
- •Глава VII. Ответственность за невыполнение требований к обеспечению радиационной безопасности
- •Глава VIII. Заключительные положения
- •Инструкция «Действия после получения информации о радиационной аварии»
Глава V. Защита от ионизирующего излучения в условиях повседневной деятельности
1. Принципы обеспечения радиационной безопасности
Правовые основы обеспечения радиационной безопасности населения определены Федеральным законом «О радиационной безопасности населения», принятым Государственной Думой 5 декабря 1995 года. Согласно данному закону, радиационная безопасность – это состояние защищенности настоящего и будущего поколений людей от вредного для их здоровья воздействия ионизирующего излучения.
Она достигается путем соблюдения основных принципов и норм радиационной безопасности без необоснованных ограничений полезной деятельности при использовании излучения в различных областях хозяйства, в науке и медицине.
Выделяют следующие принципы обеспечения радиационной безопасности:
нормирования – непревышение допустимых пределов индивидуальных доз облучения граждан от всех источников ионизирующего излучения;
обоснования – запрещение всех видов деятельности по использованию источников ионизирующего излучения, при которых полученная для человека и общества польза не превышает риск возможного вреда, причиненного дополнительным к естественному радиационному фону облучением;
оптимизации – поддержание на возможно низком и достижимом уровне с учетом экономических и социальных факторов индивидуальных доз облучения и числа облучаемых лиц при использовании любого источника ионизирующего излучения.
Правовой основой для реализации этих принципов являются «Нормы радиационной безопасности (НРБ-99)» – документ категории санитарно-эпидемиологических нормативов (СП 2.6.1. 758-99), введенный в действие с 1 января 2000 г.
Определяющим считают предельно-допустимую дозу (ПДД) – это годовой уровень облучения, не вызывающий при равномерном облучении в течение 50 лет неблагоприятных изменений в состоянии здоровья облучаемого и его потомства.
НРБ-99 вводят следующие категории облучаемых лиц:
персонал и лица, работающие с техногенными источниками (группа А) или находящиеся по условиям работы в сфере их воздействия (группа Б);
все население, включая лиц из персонала, вне сферы и условий их производственной деятельности.
Для указанных категорий облучаемых лиц НРБ-99 вводят значения дозовых пределов, представленных в табл. 13. Основные дозовые пределы облучаемых лиц из персонала и населения не включают в себя дозы от природных, медицинских источников ионизирующего излучения и дозу вследствие радиационных аварий. На эти виды облучения устанавливаются специальные ограничения.
Табл. 13. Основные дозовые пределы
Нормируемые величины |
Дозовые пределы |
|
лица из персонала* (группа А) |
лица из населения |
|
Эффективная доза |
20 мЗв в год в среднем за любые последовательные 5 лет, но не более 50 мЗв в год |
1 мЗв в год в среднем за любые 5 лет, но не более 5 мЗв в год |
Эквивалентная доза за год в хрусталике, коже**, кистях и стопах |
150 мЗв 500 мЗ 500 мЗв |
15 мЗв 50мЗв 50мЗв |
Примечания.
* Дозы облучения, как и все остальные допустимые производные уровни персонала группы Б, не должны превышать 1/4 значений для персонала группы А.
** Относится к среднему значению в слое толщиной 5 мг/см2 под покровным слоем толщиной 5 мг/см2. На ладонях толщина покровного слоя – 40 мг/см2.
Предусмотрено, что при одновременном воздействии источников внешнего и внутреннего облучения должно выполняться условие, чтобы отношение дозы внешнего облучения к пределу дозы и отношение годовых поступлений нуклидов к их пределам в сумме не превышали 1.
Для женщин из персонала в возрасте до 45 лет эквивалентная доза в коже на поверхности нижней части живота не должна превышать 1 мЗв в месяц, а поступление радионуклидов в организм за год не более 1/20 предела годового поступления для персонала. При этом эквивалентная доза облучения плода за 2 месяца невыявленной беременности не превышает 1 мЗв.
При установлении беременности женщин из персонала работодатели должны переводить на другую работу, не связанную с излучением.
Для студентов в возрасте до 21 года, проходящих обучение с источниками ионизирующего излучения, годовые накопленные дозы не должны превышать значений, установленных для персонала группы Б.
При проведении профилактических медицинских рентгенологических, а также научных исследований практически здоровых лиц, не имеющих медицинских противопоказаний, годовая эффективная доза облучения не должна превышать 1 мЗв.
В целях социально-экономической оценки воздействия ионизирующего излучения на людей для расчета вероятностей потерь и обоснования расходов на радиационную защиту при реализации принципа оптимизации НРБ-99 определяют, что облучение в коллективной эффективной дозе в 1 чел-Зв приводит к потере 1 чел-года жизни населения.
НРБ-99
вводят понятия индивидуальный
и коллективный риск, а
также определяют значение максимальной
величины
уровня пренебрегаемого риска воздействия
облучения.
Согласно этим нормам, в области малых
доз (менее 0,5 Зв) индивидуальный и
коллективный риск возникновения
стохастических
(вероятностных) эффектов определяется
по формулам:
;
где r,
R –
индивидуальный и коллективный риск
соответственно; Е,
SE
-
индивидуальная и коллективная
эффективность дозы соответственно;
р(Е),
p(SE)
–
вероятность событий, создающих дозы Е
и
SE
соответственно;
rE
–
коэффициент риска от смертельного рака,
серьезных наследственных эффектов и
несмертельного рака (приведенного по
вреду и последствиям от смертельного
рака).
Коэффициент риска равен:
rе = 5,6×10-2 l/чел.-Зв при Е < 200 мЗв/год |
для персонала; |
rе = 1,1×10-1 l/чел.-Зв при Е > 200 мЗв/год |
|
rе = 7,3×10-2 l/чел.-Зв при Е < 200 мЗв/год |
для населения. |
rе = 1,5×10-1 1/чел.-Зв при Е > 200 мЗв/год |
Для событий с тяжелыми последствиями от детерминированных (пороговых) эффектов в НРБ-99 консервативно принимается r=р(Е); R=p(E)·N, где N – численность популяции, подвергающаяся радиационному воздействию в дозе Е>0,5 Зв.
Согласно
НРБ-99, риск потенциального облучения
оправдан при условии, когда
где ν – валовой (полный) доход; р
– затраты на
основное производство; х
– затраты на
защиту; α – цена риска – денежный
эквивалент единицы риска.
НРБ-99 подчеркивают, что снижение риска до возможно низкого уровня (оптимизацию) следует осуществлять с учетом двух обстоятельств:
предел риска регламентирует потенциальное облучение от всех возможных источников, поэтому для каждого источника при оптимизации устанавливается граница риска;
при снижении риска потенциального облучения существует минимальный уровень риска, ниже которого риск считается пренебрежимым и дальнейшее снижение риска нецелесообразно.
Предел индивидуального риска для техногенного облучения лиц из персонала принимается 1,0∙10-3 за 1 год, а для населения 5,0∙10-5 за 1 год.
Уровень пренебрежимого риска разделяет область оптимизации риска и область безусловно приемлемого риска и составляет 10-6 за 1 год.
