Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ЛР № 1 (обработка данных).doc
Скачиваний:
1
Добавлен:
01.03.2025
Размер:
475.14 Кб
Скачать

Критерий согласия хи-квадрат (Пирсона)

Пусть произведено n независимых измерений некоторой величины X, рассматриваемой как случайная. Результаты измерений для удобства распределяются в порядке возрастания от наименьшего до наибольшего.

Весь диапазон измеренных значений величины Х разделяется на некоторое число разрядов (интервалов). Число этих разрядов определяется различными способами, например

или , (8)

где k – число разрядов;

n – число измерений.

После определения числа разрядов ряда строится статистический ряд – таблица 1, в которой приведены длины разрядов Ii (в порядке их соответствия оси абсцисс измеряемой величины Х), количества значений величины mi, оказавшихся в том или ином разряде, а также статистические частоты P*i.

Таблица 1

Ii

x1; x2

x2; x3

...

xi; xi+1

...

xk; xk+1

mi

m1

m2

...

mi

...

mk

...

...

Если теоретический закон нормальный, то с помощью формулы (7) определяется теоретическая вероятность в разряде (xi; xi+1):

,

где и – соответственно математическое ожидание и СКО величины Х.

Поскольку они не известны, то при расчетах заменяются статистическими значениями – средним арифметическим значением (1) и статистическим СКО Sx (3).

В качестве меры расхождения между теоретическими вероятностями и статистическими частотами критерий хи-квадрат предусматривает использование величины

, (9)

Если в процессе использования критерия согласия хи-квадрат определена величина , то по числам и r (r = k – s – число степеней свободы, где s – число независимых условий, которым должны удовлетворять статистические вероятности . Число s определяется формой теоретического закона распределения. Для симметричных законов распределения, таких как нормальный, s = 3) с помощью таблицы (приложение Б) находится вероятность р того, что величина, имеющая распределение с r степенями свободы, превзойдет данное значение . Вероятность р есть вероятность того что за счет чисто случайных причин мера расхождения теоретического и эмпирического распределений должна быть не меньше, чем полученная по результатам измерения.

Если серия измерений выполнена качественно, систематические погрешности исключены, то вероятность р, превышающая 0,2, может рассматриваться как не столь малая, при которой рассматриваемую гипотезу можно считать правдоподобной. И наоборот, если вероятность р велика, например, 0,95, то следует с настороженностью подойти к принятию гипотезы, если число измерений не равно 300 … 500.

Обработка результатов прямых равноточных измерений

Прямыми называются измерения, результат которых позволяет непосредственно получить искомое значение величины.

Равноточными (равнорассеянными) называются прямые независимые измерения постоянной величины, результаты которых могут рассматриваться как случайные, распределенные по одному и тому же закону.

В большинстве случаев при обработке прямых равноточных измерений исходят из предположения нормального закона результатов и погрешностей измерений.

По результатам серии снятия отсчетов по формуле (1) вычисляется наилучшая оценка математического ожидания (среднее арифметическое).

Если известна систематическая погрешность и она постоянна, то ее исключают из найденной величины математического ожидания.

По формуле (3) определяется наилучшая оценка СКО Sx (статистическая).

Помимо значений и Sx как точечных оценок при обработке результатов прямых равноточных измерений пользуются также интервальными оценками. Задав значение доверительной вероятности tx (из ряда 0,90, 0,95, 0,99), результат измерений записывают в виде

(10)

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]