Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы к экзамену по линейной алгебре( 1 семест...doc
Скачиваний:
13
Добавлен:
01.03.2025
Размер:
698.37 Кб
Скачать

Вопрос 22.

Любая однородная система линейных алгебраических уравнений, ранг матрицы которой равен r, с помощью элементарных преобразований может быть приведена к каноническому виду:

Общее решение однородной линейной системы, записанной в каноническом виде, очевидно, определяется формулами:

Свободные переменные xr+1 , xr+2 , ..., xm−1, xm могут принимать произвольные значения.

Вычисленные по этим формулам n − r линейно независимых решений образуют фундаментальную систему решений:

Тогда общее решение системы можно записать в вектороной форме в виде:

Здесь С1С2, ..., Сnr−1Сnr — произвольные константы.

Вопрос 23.

Квадратичные формы.

Определение: Однородный многочлен второй степени относительно переменных х1 и х2

Ф(х1, х2) = а11

не содержащий свободного члена и неизвестных в первой степени называется квадратичной формой переменных х1 и х2.

Определение: Однородный многочлен второй степени относительно переменных х1, х2 и х3

не содержащий свободного члена и неизвестных в первой степени называется квадратичной формой переменных х1, х2 и х3.

Рассмотрим квадратичную форму двух переменных. Квадратичная форма имеет симметрическую матрицу А = . Определитель этой матрицы называется определителем квадратичной формы.

Пусть на плоскости задан ортогональный базис . Каждая точка плоскости имеет в этом базисе координаты х1, х2.

Если задана квадратичная форма Ф(х1, х2) = а11 , то ее можно рассматривать как функцию от переменных х1 и х2.

Приведение квадратичных форм к каноническому

виду.

Рассмотрим некоторое линейное преобразование А с матрицей .

Это симметрическое преобразование можно записать в виде:

y1 = a11x1 + a12x2

y2 = a12x1 + a22x2

где у1 и у2 – координаты вектора в базисе .

Очевидно, что квадратичная форма может быть записана в виде

Ф(х1, х2) = х1у1 + х2у2.

Как видно, геометрический смысл числового значения квадратичной формы Ф в точке с координатами х1 и х2 – скалярное произведение .

Если взять другой ортонормированный базис на плоскости, то в нем квадратичная форма Ф будет выглядеть иначе, хотя ее числовое значение в каждой геометрической точке и не изменится. Если найти такой базис, в котором квадратичная форма не будет содержать координат в первой степени, а только координаты в квадрате, то квадратичную форму можно будет привести к каноническому виду.

Если в качестве базиса взять совокупность собственных векторов линейного преобразования, то в этом базисе матрица линейного преобразования имеет вид:

.

При переходе к новому базису от переменных х1 и х2 мы переходим к переменным и . Тогда:

Тогда .

Выражение называется каноническим видом квадратичной формы. Аналогично можно привести к каноническому виду квадратичную форму с большим числом переменных.

Теория квадратичных форм используется для приведения к каноническому виду уравнений кривых и поверхностей второго порядка.