Вопрос 22.
Любая однородная система линейных алгебраических уравнений, ранг матрицы которой равен r, с помощью элементарных преобразований может быть приведена к каноническому виду:
Общее решение однородной линейной системы, записанной в каноническом виде, очевидно, определяется формулами:
Свободные переменные xr+1 , xr+2 , ..., xm−1, xm могут принимать произвольные значения.
Вычисленные по этим формулам n − r линейно независимых решений образуют фундаментальную систему решений:
Тогда общее решение системы можно записать в вектороной форме в виде:
Здесь С1, С2, ..., Сn−r−1, Сn−r — произвольные константы.
Вопрос 23.
Квадратичные формы.
Определение: Однородный многочлен второй степени относительно переменных х1 и х2
Ф(х1,
х2)
= а11
не содержащий свободного члена и неизвестных в первой степени называется квадратичной формой переменных х1 и х2.
Определение: Однородный многочлен второй степени относительно переменных х1, х2 и х3
не содержащий свободного члена и неизвестных в первой степени называется квадратичной формой переменных х1, х2 и х3.
Рассмотрим
квадратичную форму двух переменных.
Квадратичная форма имеет симметрическую
матрицу А =
.
Определитель этой матрицы называется
определителем
квадратичной формы.
Пусть
на плоскости задан ортогональный базис
.
Каждая точка плоскости имеет в этом
базисе координаты х1,
х2.
Если задана квадратичная форма Ф(х1, х2) = а11 , то ее можно рассматривать как функцию от переменных х1 и х2.
Приведение квадратичных форм к каноническому
виду.
Рассмотрим
некоторое линейное преобразование А с
матрицей
.
Это симметрическое преобразование можно записать в виде:
y1 = a11x1 + a12x2
y2 = a12x1 + a22x2
где
у1
и у2
– координаты вектора
в базисе
.
Очевидно, что квадратичная форма может быть записана в виде
Ф(х1, х2) = х1у1 + х2у2.
Как
видно, геометрический смысл числового
значения квадратичной формы Ф в точке
с координатами х1
и х2
– скалярное произведение
.
Если взять другой ортонормированный базис на плоскости, то в нем квадратичная форма Ф будет выглядеть иначе, хотя ее числовое значение в каждой геометрической точке и не изменится. Если найти такой базис, в котором квадратичная форма не будет содержать координат в первой степени, а только координаты в квадрате, то квадратичную форму можно будет привести к каноническому виду.
Если в качестве базиса взять совокупность собственных векторов линейного преобразования, то в этом базисе матрица линейного преобразования имеет вид:
.
При переходе к новому базису от переменных х1 и х2 мы переходим к переменным и . Тогда:
Тогда .
Выражение называется каноническим видом квадратичной формы. Аналогично можно привести к каноническому виду квадратичную форму с большим числом переменных.
Теория квадратичных форм используется для приведения к каноническому виду уравнений кривых и поверхностей второго порядка.
