Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы к экзамену по линейной алгебре( 1 семест...doc
Скачиваний:
13
Добавлен:
01.03.2025
Размер:
698.37 Кб
Скачать

Вопрос 2.

Показательная форма комплексного числа.

Рассмотрим показательную функцию

Можно показать, что функция w может быть записана в виде:

Данное равенство называется уравнением Эйлера. Вывод этого уравнения будет рассмотрен позднее. (См. ).

Для комплексных чисел будут справедливы следующие свойства:

1)

2)

3) где m – целое число.

Если в уравнении Эйлера показатель степени принять за чисто мнимое число (х=0), то получаем:

Для комплексно – сопряженного числа получаем:

Из этих двух уравнений получаем:

Этими формулами пользуются для нахождения значений степеней тригонометрических функций через функции кратных углов.

Если представить комплексное число в тригонометрической форме:

и воспользуемся формулой Эйлера:

Полученное равенство и есть показательная форма комплексного числа.

Извлечение корня из комплексного числа.

Возводя в степень, получим:

Отсюда:

Таким образом, корень n – ой степени из комплексного числа имеет n различных значений.

Вопрос 3.

Определение. Линейными операциями над векторами называется сложение и умножение на число.

Суммой векторов является вектор -

Произведение - , при этом коллинеарен .

Вектор сонаправлен с вектором (  ), если  > 0.

Вектор противоположно направлен с вектором (  ), если  < 0.

Вопрос 4.

Скалярное произведение векторов.

Определение. Скалярным произведением векторов и называется число, равное произведению длин этих сторон на косинус угла между ними.

 =   cos

Свойства скалярного произведения:

  1.  =  2;

  2.  = 0, если  или = 0 или = 0.

  3.  =  ;

  4. ( + ) =  +  ;

  5. (m ) = (m ) = m(  );

Если рассматривать векторы в декартовой прямоугольной системе координат, то

 = xa xb + ya yb + za zb;

Используя полученные равенства, получаем формулу для вычисления угла между векторами:

;

Вопрос 5.

(см.лекцию)

Вопрос 6.

Определение.

1) Базисом в пространстве называются любые 3 некомпланарных вектора, взятые в определенном порядке.

2) Базисом на плоскости называются любые 2 неколлинеарные векторы, взятые в определенном порядке.

3)Базисом на прямой называется любой ненулевой вектор.

Линейная зависимость векторов.

Определение. Векторы называются линейно зависимыми, если существует такая линейная комбинация , при не равных нулю одновременно i , т.е. .

Если же только при i = 0 выполняется , то векторы называются линейно независимыми.

Свойство 1. Если среди векторов есть нулевой вектор, то эти векторы линейно зависимы.

Свойство 2. Если к системе линейно зависимых векторов добавить один или несколько векторов, то полученная система тоже будет линейно зависима.

Свойство 3. Система векторов линейно зависима тогда и только тогда, когда один из векторов раскладывается в линейную комбинацию остальных векторов.

Свойство 4. Любые 2 коллинеарных вектора линейно зависимы и, наоборот, любые 2 линейно зависимые векторы коллинеарны.

Свойство 5. Любые 3 компланарных вектора линейно зависимы и, наоборот, любые 3 линейно зависимые векторы компланарны.

Свойство 6. Любые 4 вектора линейно зависимы.

Определение. Базис называется ортонормированным, если его векторы попарно ортогональны и равны единице.