- •В биологии и экологии
- •Естественно-географического факультета
- •Содержание
- •1. Пояснительная записка
- •Роль и место курса в структуре учебного плана
- •Требования к уровню освоения содержания программы
- •Тематический план и содержание курса
- •Содержание курса
- •Тема 1. Введение в биометрию
- •Литература:
- •Тема 2. Типы варьирования и составление вариационных рядов
- •Литература:
- •Тема 3. Краткая характеристика статистических показателей
- •Литература:
- •Тема 4. Вычисление важнейших параметров не взвешенного
- •Литература:
- •Тема 5. Вычисление важнейших параметров взвешенного
- •Литература:
- •Тема 6. Установление статистической достоверности различий между результатами опытов
- •Литература:
- •Тема 7. Корреляция
- •Литература:
- •Тема 8. Регрессия
- •Литература:
- •2. Материал для лекционного курса
- •Тема 1. Введение в биометрию
- •Тема 2. Типы варьирования и составление вариационных рядов
- •Тема 3. Краткая характеристика статистических показателей
- •Тема 4. Вычисление важнейших параметров не взвешенного вариационного ряда
- •К вычислению параметров не взвешенного ряда способом условной средней (даты зацветания к. Генри- a. Henryi Pax.)
- •Доверительные интервалы статистических параметров
- •Тема 5. Вычисление важнейших параметров взвешенного вариационного ряда
- •Высота растений а. Высочайшего (a. Altissima Swingle) в контроле (см)
- •Высота растений а. Высочайшего (a. Altissima Swingle) в опыте (см)
- •К вычислению моментов ряда распределений
- •К вычислению моментов ряда распределений
- •Тема 6. Установление статистической достоверности различий между результатами опытов
- •Статистические показатели морфологических признаков
- •Вычисленные и табличные значения критерия Стьюдента для средних арифметических значений морфологических признаков у сравниваемых видов
- •7. Корреляция
- •7.1.Особенности и типы корреляционной зависимости
- •7. 2. Корреляционная решетка и эмпирическая линия регрессии
- •7.3. Вычисление коэффициента корреляции для малых выборок
- •Зависимость урожая сои от высоты растений
- •Зависимость урожая сои от высоты растений
- •Зависимость урожая сои от высоты растений (к вычислению коэффициента корреляции с преобразованием имеющихся данных)
- •7. 4. Определение коэффициента корреляции для больших выборок
- •7.5. Совместное вычисление коэффициента корреляции и прямого
- •7. 6. Критерии криволинейности
- •Анализ корреляционной зависимости массы семян (у) от продолжительности вегетации (х) у сортов ячменя
- •8. Регрессия
- •8.1. Уравнение прямой линии
- •К вычислению коэффициентов прямой линии зависимости массы семян у сортов ячменя от продолжительности их вегетации
- •8.2. Уравнение множественной регрессии
- •Зависимость массы 1000 семян (у) от высоты растений (х)
- •9. Задания для выполнения лабораторно-практических работ
- •Лабораторно-практическая работа №1
- •Высоты однолетних саженцев (см) маклюры оранжевой (Maclura aurantiaca Nutt.)
- •Ответить на вопросы:
- •Литература:
- •Лабораторно-практическая работа №2
- •В виде ранжированного вариационного ряда
- •Литература:
- •Лабораторно-практическая работа №3
- •К вычислению моментов ряда распределений
- •Ответить на вопросы:
- •Литература:
- •Лабораторно-практическая работа №4
- •Опыт по выявлению эффективности контейнерного метода выращивания растений
- •Результаты инвентаризации (опыт)
- •Приживаемость растений в опыте и контроле (вариант №…)
- •Сводная таблица результатов исследования
- •Ответить на вопросы:
- •Литература:
- •Лабораторно-практическая работа № 5
- •Величины вариантов длины (х) и диаметра (у) желудей, выраженные в мм
- •Результаты замеров диаметра и длины желудей у дуба черешчатого (Quercus robur l.)
- •Ответить на вопросы:
- •Литература:
- •Лабораторно-практическая работа № 6
- •Ответить на вопросы:
- •Литература:
- •Лабораторно-практическая работа №7
- •К вычислению коэффициентов прямой линии зависимости
- •Ответить на вопросы:
- •Литература:
- •Лабораторно-практическая работа № 8 Тема: Определение коэффициентов уравнения множественной регрессии
- •Ответить на вопросы:
- •Литература:
- •10.Тесты достижений и умений Вариант 1
- •Вариант третий
- •Вариант 4
- •11. Вопросы к зачету
- •12. Основные термины и понятия
- •Список рекомендуемой литературы:
- •Приложение
- •Перевод календарных дат в непрерывный ряд (по Зайцеву, 1984)
- •Для определения достоверности коэффициента корреляции
- •241036, Брянск, Бежицкая, 14.
Тема 4. Вычисление важнейших параметров не взвешенного вариационного ряда
Приведем схему совокупного вычисления основных статистических параметров невзвешенного ряда простым, но эффективным и довольно точным способом, в расчете на то, что исследователь, например, в полевых условиях располагает лишь простейшими вычислительными средствами.
Объектом исследований является фенофаза цветения Клена Генри (Acer henryi Pax.), интродуцированного на полуостров Мангышлак (многолетние фенонаблюдения были проведены авторами работы в период с 1975 по 1989 гг., то есть в течение 14 лет). Календарные даты цветения этого вида переведены в непрерывный вариационный ранжированный ряд по методике, составленной Г. Н. Зайцевым (Приложение, табл.2). Варианты вариационного ряда распределены по мере возрастанию от минимальной варианты (65) до - максимальной (87) и занесены в столбец №1 табл.1.
Таблица 1
К вычислению параметров не взвешенного ряда способом условной средней (даты зацветания к. Генри- a. Henryi Pax.)
-
Даты (х)
а= х - А
а2
Даты (х)
а=х-А
а2
1
2
3
1
2
3
65
-10
100
73
-2
4
67
-8
64
73
-2
4
69
-6
36
78
+3
9
70
-5
25
81
+6
36
71
-4
16
85
+10
100
72
-3
9
86
+11
121
72
-3
9
87
+12
144
∑=1049
∑= -1
∑=677
Суммируем
варианты вариационного ранжированного
ряда (столбцы 1,1) и делим сумму на число
наблюдений. В результате получаем
значение средней арифметической (М).
Формула вычисления средней арифметической:
где
- сумма вариант, N
- объем выборки.
Для нашего
вариационного ряда:
Для вычисления среднего квадратического отклонения воспользуемся методом условной средней.
Ближайшее к М (средней арифметической) целое число А = 75. Используем это число в качестве условной средней (А). Отклонения от условной средней получаем по формуле: а = х – А (столбцы 2 и 2 в табл. 1). Например, для минимальной варианты из нашего вариационного ряда, значение которой составляет 65, отклонение (а) от условной средней А (75) будет составлять в соответствии с формулой: а = 65 – 75 = - 10. Вычисляем остальные значения отклонений и вносим их в столбцы 2 и 2. Суммируем отклонения с учетом их знаков. В результате получаем сумму отклонений: ∑ а = (-43) - (+42) = (- 1).
Правильность вычислений определяем по формуле: ∑а =∑х – NA, где а - отклонения от условной средней арифметической, х – значение вариант, N- количество вариант (объем выборки), А- условно средняя арифметическая. Подставляя в уравнение значения, получаем: -1 = 1049 - 14 х 75 = -1. Таким образом, равенство обеих частей уравнения соблюдается, следовательно, вычисления выполнены правильно.
Возводим в квадрат условные отклонения и отклонения в квадрате вносим в столбцы 3 и 3 табл.1. Отклонения, возведенные в квадрат, Суммируем. В результате получаем: ∑ а2 = 677.
Среднее квадратическое отклонение определяем по формуле:
Определяем остальные параметры для нашего не взвешенного ряда по уже известным формулам, а для определения ошибок этих параметров формулы приводим, непосредственно, при их вычислении:
Ошибка средней
арифметической:
Критерий достоверности
средней арифметической:
Ошибка сигмы
определяется по формуле:
Коэффициент
вариации:
Ошибка коэффициента вариации определяется по формуле:
Показатель точности
опыта:
Ошибка показателя точности опыта определяется по формуле:
.
Медиану (Ме) определяем следующим образом: находим номер медианной варианты, который равен: 0,5(N+1)= 0,5 (14+1) =7,5. При четном числе вариант за медиану принимается середина промежутка между двумя центральными вариантами. При нечетном числе вариант за медиану принимается центральная варианта. В нашем случае, при четном числе вариант, медиана равна полусумме вариант 7 и 8: Ме = (72+73) / 2=72,5.
В результате мы получили основные параметры, дающие довольно полное представление о данном вариационном не взвешенном ряде. Истолковать результаты статистических исследований можно примерно так: в среднем за 14 лет клен Генри зацветает через 74,9 дня от первого марта, то есть округленно 14 мая, с ошибкой в 1,9 дня. Варьирование годовых дат зацветания у этого вида сравнительно невелико, так как коэффициент вариации равен 9,6± 1,8%. Полученные параметры заслуживают доверия ввиду большой достоверности средней арифметической (t = 39,4, что >3) и значения показателя точности опыта меньшего 5% ( Р=2,5±0,5% < 5%).
