- •В биологии и экологии
- •Естественно-географического факультета
- •Содержание
- •1. Пояснительная записка
- •Роль и место курса в структуре учебного плана
- •Требования к уровню освоения содержания программы
- •Тематический план и содержание курса
- •Содержание курса
- •Тема 1. Введение в биометрию
- •Литература:
- •Тема 2. Типы варьирования и составление вариационных рядов
- •Литература:
- •Тема 3. Краткая характеристика статистических показателей
- •Литература:
- •Тема 4. Вычисление важнейших параметров не взвешенного
- •Литература:
- •Тема 5. Вычисление важнейших параметров взвешенного
- •Литература:
- •Тема 6. Установление статистической достоверности различий между результатами опытов
- •Литература:
- •Тема 7. Корреляция
- •Литература:
- •Тема 8. Регрессия
- •Литература:
- •2. Материал для лекционного курса
- •Тема 1. Введение в биометрию
- •Тема 2. Типы варьирования и составление вариационных рядов
- •Тема 3. Краткая характеристика статистических показателей
- •Тема 4. Вычисление важнейших параметров не взвешенного вариационного ряда
- •К вычислению параметров не взвешенного ряда способом условной средней (даты зацветания к. Генри- a. Henryi Pax.)
- •Доверительные интервалы статистических параметров
- •Тема 5. Вычисление важнейших параметров взвешенного вариационного ряда
- •Высота растений а. Высочайшего (a. Altissima Swingle) в контроле (см)
- •Высота растений а. Высочайшего (a. Altissima Swingle) в опыте (см)
- •К вычислению моментов ряда распределений
- •К вычислению моментов ряда распределений
- •Тема 6. Установление статистической достоверности различий между результатами опытов
- •Статистические показатели морфологических признаков
- •Вычисленные и табличные значения критерия Стьюдента для средних арифметических значений морфологических признаков у сравниваемых видов
- •7. Корреляция
- •7.1.Особенности и типы корреляционной зависимости
- •7. 2. Корреляционная решетка и эмпирическая линия регрессии
- •7.3. Вычисление коэффициента корреляции для малых выборок
- •Зависимость урожая сои от высоты растений
- •Зависимость урожая сои от высоты растений
- •Зависимость урожая сои от высоты растений (к вычислению коэффициента корреляции с преобразованием имеющихся данных)
- •7. 4. Определение коэффициента корреляции для больших выборок
- •7.5. Совместное вычисление коэффициента корреляции и прямого
- •7. 6. Критерии криволинейности
- •Анализ корреляционной зависимости массы семян (у) от продолжительности вегетации (х) у сортов ячменя
- •8. Регрессия
- •8.1. Уравнение прямой линии
- •К вычислению коэффициентов прямой линии зависимости массы семян у сортов ячменя от продолжительности их вегетации
- •8.2. Уравнение множественной регрессии
- •Зависимость массы 1000 семян (у) от высоты растений (х)
- •9. Задания для выполнения лабораторно-практических работ
- •Лабораторно-практическая работа №1
- •Высоты однолетних саженцев (см) маклюры оранжевой (Maclura aurantiaca Nutt.)
- •Ответить на вопросы:
- •Литература:
- •Лабораторно-практическая работа №2
- •В виде ранжированного вариационного ряда
- •Литература:
- •Лабораторно-практическая работа №3
- •К вычислению моментов ряда распределений
- •Ответить на вопросы:
- •Литература:
- •Лабораторно-практическая работа №4
- •Опыт по выявлению эффективности контейнерного метода выращивания растений
- •Результаты инвентаризации (опыт)
- •Приживаемость растений в опыте и контроле (вариант №…)
- •Сводная таблица результатов исследования
- •Ответить на вопросы:
- •Литература:
- •Лабораторно-практическая работа № 5
- •Величины вариантов длины (х) и диаметра (у) желудей, выраженные в мм
- •Результаты замеров диаметра и длины желудей у дуба черешчатого (Quercus robur l.)
- •Ответить на вопросы:
- •Литература:
- •Лабораторно-практическая работа № 6
- •Ответить на вопросы:
- •Литература:
- •Лабораторно-практическая работа №7
- •К вычислению коэффициентов прямой линии зависимости
- •Ответить на вопросы:
- •Литература:
- •Лабораторно-практическая работа № 8 Тема: Определение коэффициентов уравнения множественной регрессии
- •Ответить на вопросы:
- •Литература:
- •10.Тесты достижений и умений Вариант 1
- •Вариант третий
- •Вариант 4
- •11. Вопросы к зачету
- •12. Основные термины и понятия
- •Список рекомендуемой литературы:
- •Приложение
- •Перевод календарных дат в непрерывный ряд (по Зайцеву, 1984)
- •Для определения достоверности коэффициента корреляции
- •241036, Брянск, Бежицкая, 14.
Литература:
Зайцев Г.Н. Математическая статистика в экспериментальной ботанике / Г.Н.Зайцев. – М.: Наука, 1984. – с. 39-59.
Любимов В.Б. Методические рекомендации по применению математической статистики в экспериментальной экологии и биологии / В.Б.Любимов, Е.Б.Смирнова, К.В.Балина. – Балашов: СГУ, 1999. – с.6-8.
Федоров А.И. Методы математической статистики в биологии и опытном деле / А.И.Федоров. – Алма-Ата: Казгосиздат, 1957. – с. 23-49.
Лабораторно-практическая работа №3
Тема: Вычисление важнейших параметров взвешенного вариационного ряда
Цель задания: Получить навыки и умения вычисления параметров для больших выборок
Порядок работы: В качестве примера вычислим параметры взвешенного вариационного ряда, приведенного в лабораторно-практической работе №2.
В столбце третьем
выбираем варианту, имеющую наибольшую
частоту (Табл. 1). Принимаем эту варианту
за условную среднюю (А). По формуле
определяем отклонения от условной
средней. Кодируем варианты (столбец 4).
Частоты f перемножаем с
1-4 степенями условных отклонений (столбцы
5-8). Суммируем числа в столбцах 3, 5- 8.
Таблица 1
К вычислению моментов ряда распределений
Границы классов |
Середина класса (х) |
Часто-та (f) |
a |
fa |
fa2 |
fa3 |
fa4 |
a+1 |
(a+1)4 |
(a+1)4f |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
|
|
|
|
|
|
|
|
|
|
|
C=… А=… |
|
N=… |
K=… |
|
|
|
|
|
|
|
Прежде чем переходить к вычислению условных моментов, проверим выполненные действия. Сумма чисел столбца 11 должна быть равна следующему выражению: .
Вычисляем условные моменты распределения (моментами распределения называют средние степени отклонений вариант от средней арифметической - это центральные моменты, а средние степени отклонений от произвольного числа называются условными моментами). Порядок момента равен степени, в которую возводится отклонение. Условные моменты вычисляются для получения возможности вычисления центральных моментов.
…;
…;
…;
…;
По следующим формулам:
где момент, вычисляем правую часть уравнений:
Находим центральные моменты из уравнений:
…;
…;
…, где с - классовый интервал, тогда:
…;
…;
…
Вычисляем: среднюю арифметическую (M= A+ m1c.):
среднее квадратическое отклонение ;
коэффициент асимметрии:
…;
эксцесс:
…
.
Коэффициент
вариации:
…
.
Дать анализ результатам исследований.
