Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ODU_-_raschyotka_metodukazania.doc
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
2.69 Mб
Скачать

Задача № 1. Уравнения с разделяющимися переменными и приводящиеся к ним.

Дифференциальное уравнение называется уравнением с разделенными переменными, его общий интеграл имеет вид

.

Уравнение , в котором коэффициенты при дифференциалах распадаются на множители, зависящие только от и только от называется уравнением с разделяющимися переменными.

Путем деления на произведение оно приводится к уравнению с разделенными переменными:

.

Общий интеграл этого уравнения имеет вид

.

Замечание. Деление на может привести к потере частных решений, обращающих в ноль произведение .

Дифференциальное уравнение

,

где - постоянные, заменой переменных преобразуется в

уравнение с разделяющимися переменными.

Пример 1.

Решить уравнение

Решение. Разделим обе части уравнения на произведение

.

Получим уравнение с разделенными переменными. Интегрируя его, найдем

.

После потенцирования получим

или .

Откуда .

Обозначая , будем иметь или .

Получили общий интеграл этого уравнения. Функции , и - являются частными решениями.

Ответ: - общий интеграл.

Пример 2.

Найти частное решение уравнения , удовлетворяющее начальному условию .

Решение. Имеем или .

Разделяем переменные, для этого обе части уравнения делим на произведение

.

Интегрируя, найдем общий интеграл

в качестве производной константы взяли .

После потенцирования, получим или - общее решение исходного уравнения.

Найдем константу , используя начальное условие , или

отсюда .

Искомое частное решение или решение задачи Коши .

Ответ: .

Упражнения. Решить уравнения

1. . Ответ: .

2. . Ответ: .

3. . Ответ: .

4. . Ответ: или .

Решить уравнения с разделяющимися переменными:

1.

.

2.

.

3.

.

4.

.

5.

.

6.

.

7.

.

8.

.

9.

.

10.

.

11.

.

12.

.

13.

.

14.

.

15.

.

16.

.

17.

.

18.

.

19.

.

20.

.

21.

.

22.

.

23.

.

24.

.

25.

.

26.

.

27.

.

28.

.

29.

.

30.

.

Задача 2. Однородные дифференциальные уравнения.

Дифференциальное уравнение (д.у.)

Называется однородным д.у. относительно и , если функция является однородной функцией своих аргументов нулевого измерения. Это значит

. Например функция - однородная

функция нулевого измерения.

Однородное д.у. всегда можно представить в виде

(1)

Введя новую искомую функцию , уравнение (1) можно привести к уравнению с разделяющимися переменными:

или переменные разделяются.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]