
- •Лекция №1. Тема «Введение».
- •1. Предмет физиологии.
- •Лекция №2. Тема «физиология возбудимых тканей».
- •2. Основные физиологические свойства возбудимых тканей.
- •3. Биоэлектрические явления.
- •4. Понятие о состоянии покоя и активности возбудимых тканей.
- •Лекция №3. Тема «Законы раздражения».
- •Лекция №4. Тема «Общая физиология нервной системы».
- •3. Типы нервных волокон
- •Лекция №6. Тема «Нервные центры».
- •Лекция №7. Тема «Частная физиология цнс».
- •Лекция №8. Тема «Физиология промежуточного и переднего мозга».
- •Лекция №9. Тема «Вегетативная нервная система».
- •Лекция №10. Тема «Физиология нейромоторного аппарата».
- •Лекция №14. Тема «Слуховой, обонятельный, вкусовой и вестибулярный анализаторы».
- •Лекция №15. Тема «Высшая нервная деятельность (внд)».
- •Лекция №16. Тема «Сон и бодрствование».
Лекция №10. Тема «Физиология нейромоторного аппарата».
Эффекторный отдел. Классификация мышц. Виды, режимы, механизмы сокращения мышц и его сопряжение с возбуждением.
1. Физические и физиологические свойства скелетных, сердечной и гладких мышц
По морфологическим признакам выделяют три группы мышц:
1) поперечно-полосатые мышцы (скелетные мышцы);
2) гладкие мышцы;
3) сердечную мышцу (или миокард).
Функции поперечно-полосатых мышц:
1) двигательная (динамическая и статическая);
2) обеспечения дыхания;
3) мимическая;
4) рецепторная;
5) депонирующая;
6) терморегуляторная.
Функции гладких мышц:
1) поддержание давления в полых органах;
2) регуляция давления в кровеносных сосудах;
3) опорожнение полых органов и продвижение их содержимого.
Функция сердечной мышцы – насосная, обеспечение движения крови по сосудам.
Физиологические свойства скелетных мышц:
1) возбудимость (ниже, чем в нервном волокне, что объясняется низкой величиной мембранного потенциала);
2) низкая проводимость, порядка 10–13 м/с;
3) рефрактерность (занимает по времени больший отрезок, чем у нервного волокна);
4) лабильность;
5) сократимость (способность укорачиваться или развивать напряжение).
Различают два вида сокращения:
а) изотоническое сокращение (изменяется длина, тонус не меняется);
б) изометрическое сокращение (изменяется тонус без изменения длины волокна). Различают одиночные и титанические сокращения. Одиночные сокращения возникают при действии одиночного раздражения, а титанические возникают в ответ на серию нервных импульсов;
6) эластичность (способность развивать напряжение при растягивании).
Физиологические особенности гладких мышц.
Гладкие мышцы имеют те же физиологические свойства, что и скелетные мышцы, но имеют и свои особенности:
1) нестабильный мембранный потенциал, который поддерживает мышцы в состоянии постоянного частичного сокращения – тонуса;
2) самопроизвольную автоматическую активность;
3) сокращение в ответ на растяжение;
4) пластичность (уменьшение растяжения при увеличении растяжения);
5) высокую чувствительность к химическим веществам.
Физиологической особенностью сердечной мышцы является ее автоматизм. Возбуждение возникает периодически под влиянием процессов, протекающих в самой мышце. Способностью к автоматизму обладают определенные атипические мышечные участки миокарда, бедные миофибриллами и богатые саркоплазмой.
2. Механизмы мышечного сокращения
Электрохимический этап мышечного сокращения.
1. Генерация потенциала действия. Передача возбуждения на мышечное волокно происходит с помощью ацетилхолина. Взаимодействие ацетилхолина (АХ) с холинорецепторами приводит к их активации и появлению потенциала действия, что является первым этапом мышечного сокращения.
2. Распространение потенциала действия. Потенциал действия распространяется внутрь мышечного волокна по поперечной системе трубочек, которая является связывающим звеном между поверхностной мембраной и сократительным аппаратом мышечного волокна.
3. Электрическая стимуляция места контакта приводит к активации фермента и образованию инозилтрифосфата, который активирует кальциевые каналы мембран, что приводит к выходу ионов Ca и повышению их внутриклеточной концентрации.
Хемомеханический этап мышечного сокращения.
Теория хемомеханического этапа мышечного сокращения была разработана О. Хаксли в 1954 г. и дополнена в 1963 г. М. Девисом. Основные положения этой теории:
1) ионы Ca запускают механизм мышечного сокращения;
2) за счет ионов Ca происходит скольжение тонких актиновых нитей по отношению к миозиновым.
В покое, когда ионов Ca мало, скольжения не происходит, потому что этому препятствуют молекулы тропонина и отрицательно заряды АТФ, АТФ-азы и АДФ. Повышенная концентрация ионов Ca происходит за счет поступления его из межфибриллярного пространства. При этом происходит ряд реакций с участием ионов Ca:
1) Ca2+ реагирует с трипонином;
2) Ca2+ активирует АТФ-азу;
3) Ca2+ снимает заряды с АДФ, АТФ, АТФ-азы.
Взаимодействие ионов Ca с тропонином приводит к изменению расположения последнего на актиновой нити, открываются активные центры тонкой протофибриллы. За счет них формируются поперечные мостики между актином и миозином, которые перемещают актиновую нить в промежутки между миозиновой нитью. При перемещении актиновой нити относительно миозиновой происходит сокращение мышечной ткани.
Итак, главную роль в механизме мышечного сокращения играют белок тропонин, который закрывает активные центры тонкой протофибриллы и ионы Ca.
Лекция №11. Тема «Свойства мышц».
Упругость, вязкость, сила, тонус мышц, их работа. Закон средних нагрузок. Особенности гладкой мускулатуры.
2 часа.
Лекция №12. Тема «Управление двигательными актами».
Многоуровневая организация регуляции мышечного тонуса, позы, движения. Роль альфа- и гамма-мотонейронов в саморегуляции деятельности мышц. Двигательный навык (моторный стереотип). Работоспособность и утомляемость мышц.
2 часа.
Лекция №13. Тема «Физиология анализаторов».
Сенсорные системы и их роль в познании мира. Кожный и зрительный анализаторы.
Общее представление об анализаторах, принципах их построения и функционирования. Зрение. Механизмы фоторецепции. Назначение палочек и колбочек. Адаптация, аккомодация, рефракция. Бинокулярное зрение, его острота. Классификация кожных рецепторов и механизмы восприятия ими раздражений. Центральные отделы кожной чувствительности.
По современным научным представлениям анализатор является частной структурой аппарата восприятия, в котором кроме анализа информации осуществляются сложные процессы синтеза. Анализ раздражителей происходит во всех звеньях анализатора. Первичный анализ происходит уже в рецепторах, реагирующих на конкретные раздражители среды. Более сложный анализ происходит в спинном мозге (реакции спинального животного на тактильные, болевые раздражители). Наиболее сложный анализ осуществляется в структурах головного мозга в проекционных зонах коры, где также происходят процессы синтеза. В связи с этим, современная физиология оперирует новым научным понятием – сенсорные системы (от латинского слова sensus – чувство, ощущение).
Сенсорная система способна проводить импульсы от рецепторов в высшие отделы ЦНС по нескольким путям. Основной путь сенсорной системы состоит из пяти звеньев:
1 – рецептор (на периферии),
2 – чувствительный нейрон (в ганглиях),
3 – второй нейрон (в спинном мозге),
4 – третий нейрон (в таламусе),
5 – четвертый нейрон (в конкретной проекционной зоне коры).
Эти пять звеньев образуют специфический путь сенсорной системы. Кроме того, в спинном мозге и подкорке происходит параллельное переключение информации на неспецифические пути сенсорной системы, ведущие в другие отделы ЦНС (мозжечок, ретикулярную формацию), а затем в кору мозга.
Рецептор определенной чувствительности посылает импульсы в свою зону коры по специфическим путям, а в другие зоны – по неспецифическим путям. В результате, в коре мозга возникает сложная мозаика возбужденных зон коры (чувствительных, ассоциативных, двигательных) и других отделов мозга, отражающая аналитико-синтетическую деятельность. Эта деятельность позволяет нам наиболее полно воспринимать события внешнего мира, определять отношение к нему и реагировать сознательным поведением. Сенсорные системы решают центральную философскую проблему отношения бытия, правильности отражения внешнего мира в сознании человека.
Познание окружающего мира всегда начинается с ощущения, которое позволяет распознать отдельные свойства и качества предметов. На основе ощущений формируется восприятие предмета или явления в целом, в единстве всех его свойств и качеств. На базе ощущений и восприятий возникает и формируется представление, которое расширяет возможности человеческого познания. Представление дает возможность воспроизвести образ предмета или явления воздействовавшего в прошлом на сознание человека.
Ощущения, восприятия и представления отражают только внешние стороны и связи отдельных предметов и явлений. Познание сущности явлений, закономерности процессов осуществляется за счет абстрактного мышления, которое посредством понятий, суждений и умозаключений позволяет вскрыть сущность явлений, их внутренние связи. Наиболее сложный процесс психологического познания человека другой личностью представляет собой круг интересов науки психологии. Раскрытие сущности психологических явлений, выступающих в форме внутренних переживаний (ощущений, мыслей, чувств) и которые недоступны прямому наблюдению, происходит благодаря работе сенсорных систем.
Сенсорные системы можно классифицировать на несколько групп.
По характеру раздражителей:
1 – механические (тактильная, болевая, проприоцептивная, вестибулярная сенсорные системы, барорецептивный отдел висцеральной сенсорной системы),
2 – химические (вкусовая, обонятельная сенсорные системы, хеморецептивный отдел висцеральной сенсорной системы),
3 – световые (зрительная сенсорная система),
4 – звуковые (слуховая сенсорная система),
5 – температурные (температурная сенсорная система).
По среде, из которой воспринимаются раздражения:
1 – внешние (вкусовая, тактильная, обонятельная, зрительная, слуховая сенсорные системы),
2 – внутренние (химическая, баростезическая сенсорные системы).
Температурная, болевая, вестибулярная и проприоцептивная сенсорные системы реагируют на внешние и внутренние раздражители.
Все анализаторы функционируют не изолированно, а в тесном взаимодействии друг с другом. Воздействия внешней среды на организм воспринимаются несколькими сенсорными системами, которые на основе аналико-синтетической деятельности мозга обеспечивают целостное восприятие процессов или явлений, их адекватное отражение в сознании человека.
Способность к элементарному анализу раздражителей появляется со свойством раздражимости организмов и совершенствуется в процессе эволюции.
Условия внешней среды, различная интенсивность воздействия разнообразных факторов в процессе трудовой деятельности человека определяют уровень чувствительности тех или иных его анализаторов, способность к компенсации недостатка зрения, слуха и т.д. за счет обострения чувствительности других анализаторов. У слепых резко обостряются слух и кожная чувствительность. У глухих обостряется зрение. Порядка 90 % информации поступает к нам через орган зрения, а остальные 10 % приходится на восприятие другими анализаторами. У женщин гораздо более высокий уровень цветоощущения, в 10 раз острее обоняние, чем у мужчин. Музыканты способны слышать звучание каждого инструмента в оркестре. Художники различают многие десятки оттенков цвета. Дегустаторы способны точно определять сорт вина, сроки его выдержки и год урожая винограда. Дети, страдающие бронхиальной астмой способны слышать звуки частотой до 30000 Гц, тогда как у обычного человека верхним порогом слуховых ощущений является 20000 Гц.
Старая физиология предлагала к рассмотрению соматосенсорную систему, включая в это понятие только кожный анализатор. Современная наука, учитывая тесную связь покрова тела с внутренними органами (висцеро-сенсорные связи), предлагает включать в понятие соматосенсорная система следующее:
1 – болевую, температурную и тактильную сенсорные системы (кожный анализатор),
2 – проприоцептивную сенсорную систему (анализатор мышечно-суставного чувства),
3 – висцеральную сенсорную систему (интероцентивный анализатор).
Болевая (ноцицептивтивная) сенсорная система имеет особое значение для выживания организма. Боль – неизбежный и постоянный спутник человека, предупреждающий об опасности, защищающий организм. Боль вызывает охранительные рефлексорные реакции, сопровождается вегетативными изменениями: расширением зрачков, сужением сосудов, повышением АД, учащением пульса, напряжением мышц в регионе.
Внезапная, мучительная и упорная боль угнетает ЦНС, вызывает расстройство гомеостаза, приводит к развитию болевого шока. Болевые ощущения возникают при действии любых чрезмерных раздражителей. Первыми реагируют на раздражение болевые рецепторы – свободные нервные окончания, расположенные как в поверхностных слоях кожи, так и внутри тела. При усилении раздражителя включаются рецепторы других типов (тактильные, температурные), передавая мощный поток болевых импульсов к таламусу (подкорковый уровень), а затем в кору. Локализация болевой чувствительности в коре полушарий точно не выяснена. Раздражение коры не вызывает боли, поэтому считается, что центром болевой чувствительности является таламус.
В зоне повреждения или воспаления тканей боль обеспечивается образованием БАВ в нервных окончаниях любого типа (гистамин, брадикинин, простагландины, фактор Хагемана). При заболевании все большее число рецепторов становится способными воспринимать боль. Благодаря «превращению» различных рецепторов в болевые, кожа обладает огромной болевой настороженностью.
Первый нейрон болевой сенсорной системы лежит в спинальном ганглии, второй в спинном мозге, третий в таламусе. В проведении болевых сигналов участвуют быстро проводящие миелиновые волокна группы А со скоростью проведения 8-17 м/с (Аd2) и 20-30 м/с (Аd1), а также медленно проводящие безмиелиновые волокна группы С со скоростью проведения 0,5-2 м/с. Тактильные сигналы проводятся с гораздо большей скоростью, чем болевые. При ударе ребром ладони о край стола сначала возникает тактильное ощущение, затем чувство первичной коротколатентной боли, а затем нарастающее чувство длиннолатентной боли. Основной путь болевой чувствительности – боковой спинноталамический + лемнисковый путь (через медиальную петлю) и латеральный тракт Морина (спинно-шейный).
Температурная сенсорная система имеет большое значение для нормальной работы механизмов терморегуляции. Рецепторы системы залегают в коже, роговице глаза, слизистых оболочках и внутренних органах. Терморецепторов 2 вида:
тепловые (тельца Руффини),
холодовые (колбы Краузе).
Свободные нервные окончания, воспринимающие боль, также воспринимают тепло. Нейтральный участок температурной шкалы находится в пределах от +29 до + 32 оС, когда человек не ощущает ни тепла, ни холода.
Холодовые терморецепторы передают импульсы по быстро проводящим миелиновым волокнам группы А. Тепловые рецепторы проводят информацию по медленно проводящим миелиновым волокнам группы С. Первый нейрон температурной сенсорной системы лежит в спинальном ганглии, второй в заднем роге спинного мозга, третий в таламусе. Путь температурной чувствительности – боковой спинно-таламический. При одновременном возбуждении тепловых и холодовых рецепторов субъективно у человека возникает чувство «жара». При повышении температуры тела (лихорадке) появляется ощущение «озноба». Ощущение холода более интенсивно, чем тепла, но более кратковременно, т.к. колбы Краузе лежат в коже более поверхностно.
Тактильная сенсорная система обеспечивает восприятие прикосновения, давления, вибрации. Рецепторы системы лежат в коже неравномерно. Их наибольшее количество находится на губах, кончиках пальцев и кончике языка, в коже сосков груди и половых органов.
Свободные нервные окончания, оплетающие волосяную луковицу реагируют на самое легкое прикосновение при отклонении волоса на 50. Диски Меркеля расположены в коже пальцев рук. В коже, лишенной волосяного покрова, локализованы тельца Мейсснера. Более глубоко в коже залегают тельца Паччини, реагирующие на давление и вибрацию. Методом двухточечного теста выявляются участки кожи с наибольшей плотностью рецепторов. Наименьшее расстояние между ножками циркуля Вебера 1,1 мм определяется у кончика языка, 2,2 мм – у кончиков пальцев, 6,8 мм – у кончика носа, 8,9 мм – у середины ладони, 67 мм – по средней линии спины.
Первый нейрон тактильной сенсорной системы лежит в спинальном ганглии, второй - в заднем роге спинного мозга, третий - в таламусе, четвертый - в постцентральной извилине коры полушария. Главный путь тактильной чувствительности - передний спинноталамический.
Пропреоцептивная сенсорная система обеспечивает мышечно-суставное чувство с помощью которого контролируется положение тела в пространстве и взаиморасположение его частей. Проприорецепторы расположены в мышцах, сухожилиях и связочно-суставном аппарате.
Проприорецепторы (механорецепторы двигательной сенсорной системы) делятся на 3 основных типа:
1 - тельца Гольджи (оплетают сухожильные волокна мышц или свободнолежащие),
2 - Тельца Пачини (залегают в фасциях, сухожилиях и капсулах суставов),
3 - нервно-мышечные и нервно-сухожильные веретена (имеют удлиненную форму и лежат в толще мышц). Эти рецепторы состоят из капсулы и проходящих внутри нее интрафузальных волокон (остальные волокна мышцы - экстрафузальные).
Рецепторы первого и второго типов возбуждаются при сокращении мышцы, а веретена - при расслаблении. Поток импульсов обратной связи, поступающих от всех типов проприорецепторов, информируют ЦНС при любом состоянии мышц, при всех, даже самых малейших изменениях мышечного тонуса. Чувствительность рецепторов в веретенах регулируется самой ЦНС с помощью двух разновидностей нервных волокон :
1. a - волокон (таких до 70 %) и
2. g - волокон (таких до 30 %).
По a - волокнам идут импульсы, вызывающие сокращение мышцы, а по g - волокнам поступают импульсы сокращения только к интрафузальным волокнам мышечных веретен. При этом угнетается их возбудимость.
Импульсы проприоцептивной чувствительности идут к первому нейрону в спинальном ганглии, второй нейрон лежит в заднем роге спинного мозга (ядра Кларка), третий - в таламусе, четвертый - в предцентральной извилине коры полушария. Пути проприоцептивной чувствительности - пучки Голля и Бурдаха, передний и задний спиномозжечковые пути.
Висцеральная сенсорная система
Висцерорецепторы (рецепторы внутренних органов) по сравнению с экстерорецепторами обладает большей специфичностью по отношению к действующим раздражителям. Среди них различают: хеморецепторы, осморецепторы, баррорецепторы и болевые рецепторы.
Сдвиги в состоянии внутренних органов, связанные с изменением химизма. Осмотического и механического давления, температуры, вызывают изменение сигналов поступающих в ЦНС. В ответ на это изменяется нервная и гуморальная регуляция работы органов.
Особенностью висцеральной сенсорной системы является то , что ее сигналы, как правило. Не ощущаются человеком.
Болевая, соматическая и висцеральная сенсорные системы тесно связаны между собой висцеросенсорными связями. Внешние рецепторы кожи таким образом становятся посредниками между внешним миром и внутренней средой организма. Каждый орган имеет свое представительство на определенных участках кожи. Такие участки называются зонами отраженных болей, или иначе - проекционными зонами Захарьина – Геда, а кожа является зеркалом внутренней среды организма.
Зрительная сенсорная система человека обеспечивает проведение к мозгу 90% информации о событиях, происходящих во внешней среде, поэтому ее значение трудно переоценить.
Рецепторные клетки системы расположены в сетчатке глазного яблока. Импульсы от фоторецепторов по волокнам зрительного нерва достигают зрительного перекреста, где часть волокон переходит на противоположную сторону. Далее зрительная информация проводится по зрительным трактам к верхнему двухолмию, латеральным коленчатым телам и таламусу (подкорковые зрительные центры), а затем по зрительной лучистости в зрительную зону коры затылочных долей мозга (17, 18 и 19 поля Бродмана).
Аккомодация – способность ясно видеть предметы на разных расстояниях от глаза.
В палочках содержится пигмент родопсин, а в колбочках – иодопсин. Под влиянием света пигменты разрушаются, и этот химический процесс вызывает в клетках электрический потенциал. Для восстановления родопсина необходим его компонент – витамин А. При недостатке в организме витамина А развивается «куриная слепота» (гемералопия).
Чувствительность глаза зависит от освещенности. При переходе из темноты в свет наступает временное ослепление. За счет понижения чувствительности фоторецепторов, через некоторое время глаз привыкает к свету (световая адаптация). При переходе со света в темноту также возникает ослепление. Через некоторое время чувствительность фоторецепторов повышается и зрение восстанавливается (темновая адаптация).
Рассмотрение предметов обоими глазами называется бинокулярным зрением. При этом мы видим не два, а один предмет. Это объясняется:
Сведением глазных осей (конвергенцией) при рассмотрении близких объектов и разведении осей (дивергенции) при рассмотрении удаленных объектов.
Восприятием изображения предмета соответственными (идентичными) участками сетчатки правого и левого глаза.
Бинокулярное зрение позволяет определить расстояние до предмета и его объемные формы, а также расширяет угол зрения до 180о. Если слегка надавить сбоку на один глаз, то у человека начинает «двоиться» в глазах, т.к. в этом случае изображения предмета падают на неидентичные участки сетчатки. Это явление называется диспарацией зрения.
Человек обладает цветовым зрением и способен различать большое количество цветов. Существует целый ряд теорий цветового зрения.
Теория Геринга (1872г) и предлагает наличие в колбочках 3 гипотетических пигментов:
бело-черного
красно-зеленого
желто-синего
Распад этих пигментов под действием света позволяет ощущать белый, красный и желтый цвета. При восстановлении пигментов происходит ощущение черного, синего и зеленого цветов.
Наиболее признанной является трехкомпонентная теория Ломоносова-Гельмгольца. Ломоносов предположил (1756г), Юнг сформулировал (1807г), а Гельмгольц развил (1852г) теорию, согласно которой имеются три типа колбочек; воспринимающих красный, зеленый и сине-фиолетовый цвета. Суммация возбуждений от этих клеток в коре мозга дает ощущение того или иного цвета в пределах видимого спектра.
Аномалиями цветового зрения (дальтонизмом) страдают от 4 до 8% мужского населения. Протанопия (красн.), дейтеранопия (зел.), тританопия (сине/фиол.).
Аномалии рефракции глаза
Существуют две главные аномалии преломления лучей в глазу – дальнозоркость и близорукость. Как правило, они связаны не с недостаточностью преломляющих сред, а с аномалией длины глазного яблока.
В норме изображение рассматриваемого предмета формируется на сетчатке.
Дальнозоркость (гиперметропия) возникает при условии, когда глазное яблоко имеет слишком короткую продольную ось, поэтому параллельные лучи, идущие от далеких предметов, собираются позади сетчатки. На сетчатке же получается круг светорассеяния, т.е. неясное, расплывчатое изображение предмета. Этот недостаток рефракции может быть исправлен путем применения двояковыпуклых стекол или контактных линз, усиливающих преломление лучей.
Близорукость (миопия) возникает при условии, когда ось глаза слишком длинная, поэтому параллельные лучи сходятся в одну точку не на сетчатке, а перед ней. На сетчатке возникает круг светорассеяния. Чтобы ясно видеть вдаль необходимо использовать двояковыпуклые стекла или контактные линзы, рассеивающие лучи, отодвигая изображение предмета на сетчатку.