- •I. Предмет и цели курса
- •2. Основные этапы развития представлений о строении Мира
- •3. Практическое значение знаний о строении природы
- •4. Достоверность знаний о мегамире
- •I. Движение планет
- •5. Определение радиуса и массы Земли
- •6. Измерение расстояний до небесных тел
- •7. Законы Кеплера
- •8. Движение Земли вокруг Солнца
- •2. Солнечная система
- •9. Общие сведения о планетах
- •10. Строение недр планет зонной группы
- •11. Химический состав Земли
- •12. Возраст Земли
- •13. Внутреннее строение планет-гигантов
- •14. Окраина солнечной системы
- •3. Солнце
- •15. Общие сведения о Солнце
- •16. Температура поверхности Солнца
- •17. Условия в недрах Солнца
- •18. Проблема источников энергии Солнца
- •19 Термоядерные реакции - источник энергии Солнца
- •20. Активность Солнца
- •4. Звезды
- •21. Звездная величина
- •22. Спектры нормальных звезд
- •23. Диаграмма спектр - светимость
- •24. Определение расстояний до удаленных звезд
- •25. Определение радиусов и масс звезд
- •26. Феноменологическая связь между параметрами для звезд гп
- •27. Модели газовых шаров.
- •§ 28. Модели газовых шаров.
- •§ 29. Модели химически однородных газовых шаров.
- •§ 30. Внутреннее строение звезд
- •§ 31 Белые карлики
- •32. Эволюция звезд
- •33. Изохроны. Определение возрастов шаровых скоплений
- •34. Особенности эволюции тесных двойных звезд
- •35. Физически переменные звезды
- •36. Заключительные этапы эволюции звезд
- •37. Красные гиганты, планетарные туманности,
- •38. Сверхновые звезды
- •39. Нейтронные звезды
- •40. Рентгеновские пульсары
- •41. Черные дыры
10. Строение недр планет зонной группы
Каково строение недр планет? Наиболее изученной является Земля, поэтому естественно начать с описания недр Земли. По аналогии с Землей разрабатываются модели строения ПЗГ. Внутреннее строение недр планет-гигантов известно хуже. Во-первых, они расположены дальше от нас, во-вторых, для них нельзя использовать аналогию с Землей. Наконец, особенности их строения таковы, что вряд ли можно будет непосредственно изучать недра этих планет, скажем, с помощью космических аппаратов в будущем.
Как получается информация о внутреннем строении Земли? Существуют три метода.
1. Метод глубинного бурения. С помощью этого метода извлекаются образцы пород и изучается физическое и химическое состояние вещества. Ограничения этого метода связаны с очень небольшой глубиной, которую удается достичь при бурении, порядка 15 км (на суше).
2. Метод сейсмических волн. Изучая распространение сейсмических волн от землетрясений и сильных взрывов, можно получать сведения о строении глубинных недр Земли. Какую информацию несут сейсмические волны? В общих чертах идея метода заключается в следующем. Как известно, в твердых телах могут распространяться продольные (будем их обозначать индексом "l") и поперечные ("t") волны, а также поверхностные (для простоты рассуждений последний тип волн исключим из рассмотрения).
В жидкостях распространяются только l-волны (почему?). Представим себе, что в какой-то точке А (см. рис. 12) произошло землетрясение. Мы принимаем сейсмические волны в различных точках Земли. Если внутри Земли имеется жидкое ядро, то в секторах АВ и АС будем регистрировать как l-, так и t-волны, а в секторе ВС, очевидно, только l-волны (на самом деле из-за преломления волн сектор ВС будет несколько иным, но мы ограничимся рассмотрением этого упрощенного варианта). Итак, по наличию или отсутствию сектора ВС, в который приходят только продольные волны, можно судить о том, есть внутри Земли жидкое ядро, или его нет. Величина сектора ВО, очевидно, позволяет судить о размере жидкого ядра. Но это еще не все. Фазовые скорости распространения сейсмических волн l- и t- типов различные. Теоретические исследования дают связь с параметрами среды, через которую волны проходят, в частности, с плотностью и упругостью. Поэтому, измеряя времена прихода различных типов сейсмических волн от одного и того же источника на станциях, расположенных в различных точках поверхности Земли, можно построить зависимость (r) (r - расстояние от центра Земли).
Исследования показали, что во внутренних областях Земли, , распространяются лишь продольные волны. Следовательно, вещество здесь находится в жидкой фазе. Эта область называется ядром. По массе жидкое ядро составляет приблизительно 30% . Вещество над ядром находится в твердой фазе. Эта область называется мантией. Ее масса примерно 70% (рис. 13). Наконец, верхняя часть мантии, толщина которой определяется пределом текучести ( 10 км), называется корой.
Температура в центре Земли оценивается в (45)103 K. Возможно, что внутри жидкого ядра имеется твердое ядро.
3. Метод магнитного поля. Он опирается на такое соображение: если вещество в недрах планета расплавлено, то оно обладает заметной проводимостью. Следовательно, электрические токи, циркулирующие в жидком ядре, будут создавать магнитное поле. Итак, если планета имеет собственное магнитное поле, то у нее есть жидкое ядро. Обратное утверждение, вообще говоря, неверно. Отсутствие магнитного поля еще не означает отсутствия жидкого ядра. Возможно, что в силу каких-то причин в ядре планеты не циркулируют токи. Наглядным примером тому служит Венера. Параметры ее очень близки к параметрам Земли. Она, скорее всего, имеет жидкое ядро. Но на Венере отсутствует магнитное поле, тогда как Земля обладает собственным магнитным полем. Как это можно объяснить? На самом деле условия, в которых находятся Земля и Венера, существенно отличаются. Так Земля имеет спутник Луну, тогда как Венера спутников не имеет. Можно думать, что Луна своим гравитационным полем генерирует возникновение циркуляции вещества в жидком ядре Земли. В то же время такой "генератор" отсутствует у Венеры. Интересно отметить, что Меркурий, не имея спутников, тем не менее, обладает магнитным полем. Вероятно, это связано с тем, что Меркурий близко располагается от Солнца, и оно вызывает циркуляцию токов в жидком ядре Меркурия. Наконец, Марс согласно расчетам не имеет жидкого ядра. Магнитное поле Марса, как и должно быть, весьма слабое.