- •Алгебраические дополнения
- •2) Понятие матрицы
- •3) Линейные операции над матрицами.
- •4) Транспонирование матриц
- •5) Обратная матрица
- •6) Матричный метод решения систем линейных уравнений.
- •7) Метод Крамера состоит в том, что мы последовательно находим главный определитель системы (5.3), т.Е. Определитель матрицы а
- •8) Метод элементарных преобразований
- •9) Ранг матрицы
- •Свойства ранга матрицы
- •11) Метод Гаусса
- •1) Векторы на плоскости и в пространстве - основные определения.
- •2) Операция сложения двух векторов - правило треугольника.
- •3)Линейная комбинация векторов
- •3) Базис. Разложение векторов по базису.
- •5) Ортогональные векторы. Ортонормированный базис.
- •6) Скалярное произведение
- •7) Векторным произведением векторов и называется вектор , который определяется следующими условиями:
- •8) Смешанным произведением векторов , и называется число, равное скалярному произведению вектора на вектор, равный векторному произведению векторов и .
- •13) Условия параллельности и перпендикулярности прямых
- •15) Векторно-параметрическое уравнение прямой
- •16) Уравнения прямой, проходящей через две данные точки
- •17) Прямая как линия пересечения двух плоскостей
- •18) Параллельность, перпендикулярность прямых, угол между прямыми
- •22) Деление отрезка в данном отношении
- •23) Пучок плоскостей
4) Транспонирование матриц
Транспонирование матриц – переход от матрицы А к матрице, в которой строки и столбцы поменялись местами с сохранением порядка.
Свойства:
5) Обратная матрица
Рассмотрим квадратную матрицу
.
Обозначим Δ =det A.
Квадратная матрица А называется невырожденной, или неособенной, если ее определитель отличен от нуля, и вырожденной, илиособенной, если Δ = 0.
Квадратная матрица В есть обратная матрица для квадратной матрицы А того же порядка, если их произведение А В = В А = Е, где Е - единичная матрица того же порядка, что и матрицы А и В.
Теорема. Для того, чтобы матрица А имела обратную матрицу, необходимо и достаточно, чтобы ее определитель был отличен от нуля.
Обратная матрица матрице А, обозначается через А1, так что В = А1 и вычисляется по формуле
,
(1)
где А i j - алгебраические дополнения элементов a i j матрицы A..
Вычисление A-1 по формуле (1) для матриц высокого порядка очень трудоемко, поэтому на практике бывает удобно находить A-1 с помощью метода элементарных преобразований (ЭП). Любую неособенную матрицу А путем ЭП только столбцов (или только строк) можно привести к единичной матрице Е. Если совершенные над матрицей А ЭП в том же порядке применить к единичной матрице Е, то в результате получится обратная матрица. Удобно совершать ЭП над матрицами А и Е одновременно, записывая обе матрицы рядом через черту. Отметим еще раз, что при отыскании канонического вида матрицы с целью нахождения ранга матрицы можно пользоваться преобразованиями строк и столбцов. Если нужно найти обратную матрицу, в процессе преобразований следует использовать только строки или только столбцы.
6) Матричный метод решения систем линейных уравнений.
вида
,
которые в матричной форме записываются
как
,
где
-
основная матрица системы,
-
матрица-столбец неизвестных переменных,
-
матрица свободных членов.
Сначала
опишем суть матричного метода, остановимся
на условии применимости этого метода,
далее подробно разберем решения
нескольких примеров.
Сразу оговоримся,
что решение систем линейных алгебраических
уравнений матричным методом и решение
СЛАУ с помощью обратной матрицы есть
одно и то же. Поэтому рекомендуем освежить
в памяти теорию раздела обратная
матрица: определение, свойства, методы
нахождения.
Приступим.
Пусть
для матрицы А порядка n на n существует
обратная матрица
.
Умножим обе части матричного
уравнения
слева
на
(порядки
матриц A
⋅
X и В позволяют
произвести такую операцию, смотрите
статью операции
над матрицами, свойства операций).
Имеем
.
Так как для операции умножения матриц
подходящих порядков характерно свойство
ассоциативности, то последнее равенство
можно переписать как
,
а по определению обратной матрицы
(E–
единичная матрица порядка n на n),
поэтому
Таким
образом, решение
системы линейных алгебраических
уравнений по матричному методу
определяется равенством
.
Другими словами, решение СЛАУ находится
с помощью обратной матрицы
.
Мы
знаем, что квадратная
матрица А порядка n на n имеет
обратную матрицу
только
тогда, когда ее определитель не равен
нулю. Следовательно, СИСТЕМУ n ЛИНЕЙНЫХ
АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ С nНЕИЗВЕСТНЫМИ
МОЖНО РЕШАТЬ МАТРИЧНЫМ МЕТОДОМ ТОЛЬКО
ТОГДА, КОГДА ОПРЕДЕЛИТЕЛЬ ОСНОВНОЙ
МАТРИЦЫ СИСТЕМЫ ОТЛИЧЕН ОТ НУЛЯ.
Рассмотрим
матричный метод на примерах. В некоторых
примерах мы не будем подробно описывать
процесс вычисления определителей
матриц, при необходимости обращайтесь
к статье вычисление
определителя матрицы.
