
- •Электроника
- •Содержание
- •1.1 Основы алгебры логики………………………………………………..5
- •1 Цифровые интегральные микросхемы
- •1.1 Основы алгебры логики
- •1.1.1 Основные определения
- •1.1.2 Некоторые логические функции и реализующие их логические элементы
- •1.1.3 Основные законы и соотношения алгебры логики
- •Сочетательный закон
- •Распределительный закон
- •1.2 Параметры цифровых интегральных микросхем
- •1.2.1 Параметры цифровых интегральных микросхем (цимс), имеющие размерность напряжение.
- •1.2.2 Параметры, соответствующие размерности тока.
- •1.2.3 Параметры, имеющие размерность мощности.
- •1.3.2 Характеристики дтл.
- •1.4 Транзисторно – транзисторная логика.
- •1.5 Ттл со сложным инвертором.
- •1.6 Ттл с открытым коллекторным выходом.
- •1.7 Ттл с тремя состояниями на выходе
- •1.8 Транзисторно-транзисторная логика Шоттки
- •1.9 Комплиментарная мдп логика
- •2 Операционные усилители
- •2.1 Параметры и характеристики оу
- •2.3 Дифференциальный усилитель
- •2.4 Составной транзистор
- •2.5 Источник тока
- •2.6 Схема сдвига уровня
- •2.7 Эмиттерный повторитель
- •2.8 Инвертирующий усилитель на оу.
- •2.9 Неинвертирующий усилитель
- •3 Технологические основы производства полупроводниковых интегральных микросхем
- •3.1 Подготовительные операции
- •3. 2 Эпитаксия
- •3.3 Термическое окисление
- •3.4 Литография
- •3.5 Легирование
- •3.5.2 Ионная имплантация.
- •3.6.1 Термическое (вакуумное) напыление.
- •3.6.2 Катодное напыление.
- •3.6.3 Ионно-плазменное напыление.
- •4 Полупроводниковые
- •4.1 Методы изоляции элементов в ппимс
- •4.1.1 Изоляция элементов обратно смещенными pn-переходами.
- •4.1.2 Резистивная изоляция.
- •4.1.3 Диэлектрическая изоляция
- •4.2 Планарно-эпитаксиальный биполярный транзистор
- •4.2.1 Этапы изготовления
- •4.2.2 Распределение примесей.
- •4.2.3 Эквивалентная схема.
- •4.3 Планарно-эпитаксиальный биполярный транзистор
- •4.4 Разновидности биполярных транзисторов
- •4.4.1 Многоэмиттерный транзистор.
- •4.4.2 Транзистор с барьером Шоттки.
- •4.4.3 Транзисторы р-n-р
- •4.5 Интегральные диоды
- •4.6 Полевые транзисторы
- •4.6.1 Полевые транзисторы с управляющим p-n переходом
- •4.6.3 Мноп-транзистор.
- •4.7 Полупроводниковые резисторы
- •4.7.1 Диффузионные резисторы.
- •4.7.2 Ионно-легированные резисторы.
- •4.8 Полупроводниковые конденсаторы
- •5.1 Подложки гимс.
- •5.2 Резисторы.
- •5.3 Конденсаторы
- •5.4 Катушки индуктивности
2 Операционные усилители
Операционным усилителем (ОУ) называют высококачественный интегральный усилитель постоянного тока с дифференциальным входом и однотактным выходом, предназначенным для работы в схемах с обратной связью. Название усилителя связано с первонача -льным применением – выполнением различных математических операций с аналоговыми сигналами (суммирование, вычитание, логарифмирование, интегрирование, дифферен-цирование и др.). В настоящее время ОУ выполняет многофункциональную роль в разнообразных устройствах. Они применяются для усиления, ограничения, перемножения, частотной фильтрации, генерирования сигналов в аналоговых и цифровых устройствах.
Обозначение ОУ приведено на рисунке 2.1а, где наряду с инвертиру- ющим (Вх 1) и неинвертирующим (Вх 2) входами и выходом используются так же цепи частотной коррекции и балансировки (FC, NC) и два источника питания: +ЕП1, у которого минус соединен с общим проводом, и -ЕП2, у которого на общем проводе плюс. Использование двух источников питания позволяет получить двухполярный сигнал на выходе. Упрощенное обозна- чение ОУ приведено на рисунках 2.1б и 2.1в без выводов для подключения источников питания и внешних элементов.
Рисунок 2.1
2.1 Параметры и характеристики оу
Ниже приведена таблица 2.1 с основными параметрами ОУ.
Таблица 2.1
Параметр |
Идеальный ОУ |
Реальный ОУ |
КU 103 |
|
10 1000 |
RВХ, кОм |
|
10 102 (БТ) 103 1012 (ПТ) |
RВЫХ, Ом |
0 |
1 1000 |
f1, МГц |
|
0,1100 |
KОС СФ, дБ |
|
40110 |
КU- коэффициент усиления ОУ КU=UВЫХ (UВХ2- UВХ1), RВХ- входное сопротивление (БТ- входной каскад выполнен на биполярных транзисторах, ПТ- на полевых транзисторах), RВЫХ- выходное сопротивление, f1- частота единичного усиления, т. е. частота, на которой коэффициент усиления снижается до единицы, KОС СФ- коэффициент ослабления синфазного сигнала
KОС СФ= КU КU СФ. КU СФ= UВЫХ UВХ. UВХ= UВХ1= UВХ2.
Характеристика прямой передачи приведена на рисунке 2.2а. Пунктиром показаны идеализированные характеристики. Цифрой 1 обозначена характе- ристика по инвертирующиму входу, цифрой 2 – по неинвертирующему. Однако реальные характеристики отличаются тем, что на выходе при
а) |
б) |
Рисунок 2.2
отсутствии входного сигнала имеется некоторое напряжение (положительное или отрицательное, как показано на рисунке 2.2а) из-за не идеальности эле- ментов схемы. Напряжение смещения UСМ – напряжение, которое необходи -мо приложить на входе, чтобы на выходе получить нулевое напряжение. В современных усилителях предусмотрены специальные выводы (NC) для балансировки (получения нуля на выходе).
Пример
АЧХ приведен на рисунке 2.2б. Частота, на
которой коэффициент усиления снижается
до единицы и есть частота единичного
усиления f1.
Частота, при которой КU
снижается в
,называется
предельной fПР.
В области от 3
fПР
до f1
действует соотношение КU(f)ff1.
Структура ОУ
Современные ОУ имеют, как правило, четыре структурных элемента. Входной дифференциальный усилитель (ДУ), который усиливает разностный сигнал. Промежуточный усилитель (ПУ). В случае ОУ с низким коэффициентом усиления ПУ может отсутствовать. В ОУ с большим
Рисунок 2.3
коэффициентом усиления в качестве ПУ могут использоваться так же диф- ференциальные каскады, но с однотактным выходом. Схема сдвига уровня (ССУ) осуществляет установку на выходе нулевого потенциала, так как на выходе ПУ как правило, напряжение отличается от нуля. Эмиттерный повто- ритель (ЭП) обеспечивает малое выходное сопротивление. Между каскадами существует непосредственная связь (без разделительных конденсаторов).