- •Математический маятник
- •3)Лагранжев подход
- •1.1. Гармонические колебания
- •1.2. Векторная интерпретация и комплексное представление
- •1.3. Модулированные колебания
- •Сложение колебаний. Векторные диаграммы. Биения.
- •Сложение колебаний Векторная диаграмма
- •3.4.Анализ колебаний маятника на основе равенства сил, моментов и сохранения энергии
- •2.4. Гармонический осциллятор и его характеристики
- •3.3. Солитонное решение уравнения для осциллятора с нелинейностью синуса
- •2.5. Гармонический осциллятор и уравнение Шредингера.
- •2.6. Цепочка осцилляторов и уравнение Клейна-Гордона-Фока(укгф)
- •Уравнение распространения волн в газовой среде.
- •11.2. Гармоническая волна
- •11.3. Волны в пространстве
- •1. Распространение волн в среде
- •§ 2. Уравнения плоской и сферической волн
- •§ 3. Уравнение плоской волны, распространяющейся в произвольном направлении
- •§ 4. Волновое уравнение
- •§ 5. Скорость упругих волн в твердой среде
- •§ 6. Энергия упругой волны
- •§ 7. Стоячие волны
- •Глава 6. Волновой пакет
- •6.1 Фазовая скорость
- •6.2 Групповая скорость
- •6.3 Сложение колебаний с непрерывной зависимостью (k)
- •6.4 Локализация пакета и его длительность
- •6.5 Частица как волновой пакет
- •6.6 Линейная и нелинейная дисперсионные зависимости
- •6.7. Расплывание волнового пакета
- •Примеры
- •Адиабатический процесс.
- •Термодинамические потенциалы.
- •Раздел I. Термодинамика
- •Тема 1. Введение. Основные понятия и определения.
- •1.1 Введение
- •1.2. Термодинамическая система.
- •1.3. Параметры состояния.
- •1.4. Уравнение состояния и термодинамический процесс.
- •Тема 2. Первый закон термодинамики.
- •2.1. Теплота и работа.
- •2.2. Внутренняя энергия.
- •2.3. Первый закон термодинамики.
- •2.4. Теплоемкость газа.
- •2.5. Универсальное уравнение состояния идеального газа.
- •2.6. Смесь идеальных газов.
- •Тема 3. Второй закон термодинамики.
- •3.1. Основные положения второго закона термодинамики.
- •3.2. Энтропия.
- •3.3. Цикл и теоремы Карно.
- •Тема 4. Термодинамические процессы.
- •4.1. Метод исследования т/д процессов.
- •4.2. Изопроцессы идеального газа.
- •4.3. Политропный процесс.
- •Тема 5. Термодинамика потока.
- •5.1. Первый закон термодинамики для потока.
- •5.2. Критическое давление и скорость. Сопло Лаваля.
- •5.3.Дросселирование.
- •Тема 6. Реальные газы. Водяной пар. Влажный воздух.
- •6.1. Свойства реальных газов.
- •6.2. Уравнения состояния реального газа.
- •6.3. Понятия о водяном паре.
- •6.4. Характеристики влажного воздуха.
- •Термодинамика Элементы статистической физики.
- •Закон Фика и уравнение диффузии.
- •Закон Ньютона для вязкого трения.
- •5.10. Вывод закона Фурье
- •1) Введенная величина f есть свободная энергия системы,
- •3) Параметр θ пропорционален абсолютной температуре т:
- •2.16. Большое каноническое распределение и термодинамика систем с переменным числом частиц
- •Двухатомный газ с молекулами из одинаковых атомов. Вращение молекул.
- •9.1. Бозоны и фермионы. Принцип Паули
11.2. Гармоническая волна
Волна называется гармонической, если она описывается функцией,
ψ(t,х) = А cos(ωt-kx + a), (11.4)
где А - амплитуда волны; ω - частота; к - волновое число; а - начальная фаза;
φ(t, x) =ωt-kx + a (11.5)
- фаза волны. Функцию (11.4) можно привести к виду (11.2):
ψ(t,х) = А cos(-k(x –ωt/k) + a),
видно, что скорость гармонической волны связана с частотой и волновым числом соотношением
v= ω/k (11.6)
Для того чтобы получить зависимость величины ψ от времени t, которая описывает ее изменения со временем в данной точке пространства, следует положить в формуле (11.4) х = const. Так как функция (11.4) при х = const описывает гармонические колебания, говорят, что гармоническая волна создает в произвольной точке пространства гармонические колебания.
Величина
T=2π/ω - период волны, а (11.7)
λ=2π/k (11.8)
- длиной волны. Если фаза (11.5) волны получит приращение 2π, то, значение функции (11.4) останется прежним. Поэтому при х= const функция (11.4) принимает одно и то же значение для всех моментов времени, которые отличаются одно от другого на пТ, где п - целое число; а при t = const значения функции (11.4) в различных точках пространства совпадают, если координаты этих точек отличаются друг от друга на пλ. График зависимости величины ψ(t,х) от координаты х при t = const для случая, когда вдоль оси х распространяется гармоническая волна, показан на рис. 11.2.
Рис. 11.2. Гармоническая волна
11.3. Волны в пространстве
Пусть физическая величина ψ распределена в пространстве, и это распределение меняется со временем. Говорят, что функция ψ = ψ(t,r) описывает волну, распространяющуюся в пространстве, если она удовлетворяет уравнению
∆- оператор Лапласа.
Волна называется плоской, если существует такая система декартовых координат, в которой функция ψ зависит только от одной из координат. Если этой координатой является х, то уравнение (11.9) сводится к (11.1). В произвольной прямоугольной системе декартовых координат плоская гармоническая волна описывается функцией
ψ(t,r) = A cos(ωt-kr + a), (11.10)
где вектор к называется волновым. В том, что эта функция является решением уравнения (11.9), нетрудно убедиться непосредственной подстановкой.
Рис. 11.3. Фазовые поверхности и лучи, вдоль которых распространяется в пространстве плоская волна
Функция
φ(t, r) = ωt – kr+a
называется фазой плоской волны. Поверхность
φ(t = const, r) = const, или kr = const
постоянной фазы (11.11) является плоскостью, к которой вектор к перпендикулярен. Такие поверхности называют фазовыми, или волновыми, а линии, перпендикулярные к фазовым поверхностям, называют лучами. Для плоской волны лучами являются прямые, параллельные волновому вектору. Этот вектор указывает направление распространения волны, а его модуль (волновое число), частота и скорость волны связаны соотношением (11.6). На рис. 11.3 изображены фазовые поверхности и лучи плоской волны.
;
- скорость фронта
волны.
,
где
- волновое число.
;
- решение этого уравнения.
ξ=x-vt
;
;
;
- тоже является решением.
- скорость фронта волны. , где - волновое число. ;
ВОЛНЫ
