
- •2 Методические указания по проверке работоспособности и градуировке контрольно-измерительных приборов
- •3 Лабораторная работа №1. Изучение и проверка работоспособности потенциометра и милливольтметра
- •3.1 Теоретические сведения
- •3.2 Описание лабораторного стенда
- •3.3 Задание на выполнение работы
- •3.4 Методика выполнения работы
- •3.5 Порядок выполнения работы
- •3.6 Требования к отчёту
- •3.7 Контрольные вопросы
- •4 Лабораторная работа №2. Изучение и проверка работоспособности электронного моста и логометра
- •4.1 Теоретические сведения
- •4.2 Описание лабораторного стенда
- •4.3 Задание на выполнение работы
- •4.4 Методика выполнения работы
- •4.5 Порядок выполнения работы
- •4.6 Требования к отчёту
- •4.7 Контрольные вопросы
- •5 Лабораторная работа №3. Изучение и проверка работоспособности манометрических термометров
- •5.1 Теоретические сведения
- •5.2 Описание лабораторного стенда
- •5.3 Задание на выполнение работы
- •5.4 Методика выполнения работы
- •5.5 Порядок выполнения работы
- •5.6 Требования к отчёту
- •5.7 Контрольные вопросы
- •6 Лабораторная работа № 4. Изучение и проверка работоспособности приборов измерения давления
- •6.1 Теоретические сведения
- •6.2 Описание лабораторного стенда
- •6.3 Задание на выполнение работы
- •6.4 Методика выполнения работы
- •6.5 Порядок выполнения работы
- •6.6 Требования к отчёту
- •6.7 Контрольные вопросы
- •7 Лабораторная работа №5. Исследование автоматической системы регулирования температуры
- •7.1 Теоретические сведения
- •7.2 Описание лабораторного стенда
- •7.3 Задание на выполнение работы
- •7.4 Методика выполнения работы
- •7.5 Порядок выполнения работы
- •7.6 Требования к отчёту
- •7.7 Контрольные вопросы
- •8 Лабораторная работа № 6. Исследование автоматической системы двухпозиционного регулирования
- •8.1 Теоретические сведения
- •8.2 Описание лабораторного стенда
- •8.3 Задание на выполнение работы
- •8.5 Порядок выполнения работы
- •8.6 Требования к отчету
- •8.7 Контрольные вопросы
- •9 Лабораторная работа №7. Свойства сигналов логических элементов
- •9.1 Теоретические сведения
- •9.6 Требования к отчёту
- •9.7 Контрольные вопросы
7.6 Требования к отчёту
Отчёт по данной работе должен содержать:
1) Название и цель лабораторной работы.
2) Функциональную схему АСР температуры и ее краткое описание.
3) Таблицу 7.1 с экспериментальными данными, график переходного процесса в АСР и таблицу 7.2 с вычисленными показателями качества регулирования.
4) Выводы по работе.
7.7 Контрольные вопросы
1) Приведите структурную схему непрерывной АСР. Какие элементы в нее входят и каково их назначение?
2) Чем отличаются стабилизирующие, программные и следящие системы автоматического регулирования?
3) Что называется законом регулирования?
4)Приведите законы регулирования П-, ПИ-, ПД-, и ПИД- регуляторов.
5) В каких случаях в АСР могут возникать переходные процессы?
6) Какие параметры характеризуют качество работы АСР? Как их определить из графика переходного процесса?
7) Типовые переходные процессы в АСР и их характеристика.
8 Лабораторная работа № 6. Исследование автоматической системы двухпозиционного регулирования
Цель работы: изучить двухпозиционный закон регулирования на примере автоматической системы регулирования температуры и проанализировать влияние параметров системы на качество двухпозиционного регулирования.
8.1 Теоретические сведения
Простейшая система двухпозиционного регулирования может быть представлена в виде последовательного соединения позиционного регулятора (ПР) и объекта регулирования (ОР), охваченных отрицательной обратной связью (рисунок 8.1). Основным возмущающим воздействием здесь является нагрузка объекта Z, изменение которой компенсируется регулирующим воздействием X. Выходная величина двухпозиционного регулятора X может принимать только два значения, соответствующие максимальному (Хmax) и минимальному (Хmin) регулирующему воздействию на объект.
Рисунок 8.1 – Структурная схема автоматической системы двухпозиционного регулирования
На рисунке 8.2а изображена статическая характеристика идеального двухпозиционного регулятора, мгновенно меняющего свой выходной сигналX при достижении регулируемой величиной Y заданного значения Yз. Реальный регулятор обладает некоторой зоной нечувствительности y (рисунок 8.2б), в пределах которой изменение регулируемой величины Y не приводит к изменению регулирующего воздействия X. Другими словами, регулятору необходимо некоторое время для срабатывания, поэтому он начинает вступать в работу с запаздыванием.
|
|
а |
б |
Рисунок 8.2 – Статическая характеристика идеального двухпозиционного регулятора (а); статическая характеристика реального двухпозиционного регулятора (б) |
При Y<Yз идеальный позиционный регулятор вырабатывает регулирующее воздействия Х=Хmax, вызывающее изменение выходной величины Y(рисунок 8.3). При достижении Y величины Yз регулятор должен был бы сработать, однако ввиду наличия зоны нечувствительности y, изменение регулирующего воздействия от Хmах до Хmin происходит с некоторым запаздыванием, при Y>Yз. Таким образом, при использовании двухпозиционных регуляторов величина Y совершает колебания относительно заданного значения Yз. Такие колебания относительно среднего значения с амплитудой А и периодом Т называются автоколебаниями. Период автоколебаний равен
Т=Тв+То,
где Тв и То − периоды включения (X=Хmax) и отключения (X=Хmin) сигнала регулирующего воздействия соответственно.
Рисунок 8.3 – Изменение выходной величины Y и регулирующего воздействия X при симметричных автоколебаниях
На рисунке 8.3 изображены так называемые симметричные автоколебания (относительно линии Y=Yз) регулируемой величины. На практике чаще приходится сталкиваться с автоколебаниями, форма которых несимметрична относительно линии Y=Yз (рисунок 8.4). При несимметричных автоколебаниях возникает так называемая квазистатическая ошибка регулирования а, равная отклонению среднего значения (оси) автоколебаний от заданного значения регулируемой величины Yз. При Тв<То, а > 0, т.е. среднее значение автоколебаний лежит выше прямой Y=Yз и наоборот. Качество двухпозиционного регулирования характеризуется параметрами возникающих в системе автоколебаний: амплитудой А, частотой колебаний и смещением а среднего значения относительно заданного значения Yз. Эти параметры зависят от времени запаздывания, ёмкости объекта регулирования, его нагрузки Z, величины зоны нечувствительности регулятора у и пределов изменения регулирующего воздействия Х= Xmax–Xmin. Чем меньше амплитуда А и смещение оси автоколебаний а, тем выше качество регулирования, при этом частота колебаний не должна быть очень большой.
Рисунок 8.4 – Изменение выходной величины при несимметричных автоколебаниях
С увеличением зоны нечувствительности позиционного регулятора у качество регулирования ухудшается: увеличивается амплитуда А и период колебаний Т в системе. Амплитуда уменьшается с уменьшением величины изменения регулирующего воздействия Х. Однако здесь необходимо иметь в виду, что величины Хmax и Xmin зависят от нагрузки объекта Z, поэтому большие пределы изменения регулирующего воздействия Х могут быть установлены только при незначительных колебаниях нагрузки объекта регулирования.
От нагрузки объекта зависит, в основном, величина и знак смещения оси автоколебаний а. При определенной нагрузке Z=Zo для данного объектаа=0. При Z > Zo величина а < 0, а при Z < Zo для данного объекта а > 0. Отклонение нагрузки от Zo в обе стороны приводит к возрастанию периода автоколебаний Т.
Позиционные регуляторы просты по конструкции, надежны в работе, несложные в настройке и обслуживании. Поэтому во всех случаях, когда позиционные регуляторы способны обеспечить требуемое качество регулирования, следует применять именно их. Обычно позиционные регуляторы используют на объектах, обладающих малым запаздыванием, большой емкостью.