
- •Глава 4. Закономерности функционирования технологических процессов ... 42
- •Глава 5. Закономерности формирования, функционирования и развития технологических и технических систем производства 67
- •Глава 9. Основы технологии химической и нефтехимической промыш ленности 231
- •Глава 10. Основы технологии строительного производства и изготовления строительных материалов и изделий ... 271
- •Глава 11. Основы технологии пищевой
- •Предисловие
- •Раздел I. Теоретические основы производственных технологий
- •Глава 1. Введение в технологию
- •1.1. Место технологии в современном обществе и производстве
- •1.2. Понятие и цель изучения технологии
- •Контрольные вопросы
- •Глава 2. Закономерности формирования технологических процессов
- •2.1. Понятие технологического процесса
- •2.2. Структура и организация технологических процессов
- •2.3. Затраты труда в ходе осуществления технологического процесса. Понятие идеальной технологии
- •2.4. Параметры (показатели) техпологического процесса
- •Контрольные вопросы
- •Глава 3. Закономерности развития технологических процессов
- •3.1. Технологическое развитие как ключевое звепо совершенствования промышленного производства и развития общества
- •3.2. Динамика трудозатрат при развитии техпологических процессов
- •3.3. Рационалистическое развитие технологических процессов
- •3.4. Эволюционное развитие технологических процессов
- •3.5. Революционное развитие технологических процессов
- •Контрольные вопросы
- •Глава 4. Закономерности функционирования технологических процессов
- •4.1. Общие принципы классификации технологических процессов
- •4.2. Физические процессы, используемые в технологии 4.2.1. Механические процессы
- •4.2.2. Гидромеханические процессы
- •4.2.3. Тепловые процессы
- •4.2.4. Массообменные процессы
- •4.3. Химические процессы в технологии
- •4.4. Биологические процессы в технологии
- •Контрольные вопросы
- •Глава 5. Закономерности формирования,
- •5.2. Классификация технологических систем
- •И функционирования
- •5.3. Закономерности развития и оптимизации технологических систем
- •5.4. Понятие технических систем, законы строения и развития технических систем
- •5.5. Методы и модели оценки научно-технологического развития производства
- •Раздел II. Практические основы производственных технологий
- •Глава 6. Общие сведения о технологической структуре хозяйственного комплекса республики беларусь
- •Глава 7. Основы технологии машиностроительного производства
- •7.1. Общие сведения о машиностроении
- •7.2. Важнейшие технологические процессы заготовительного производства в машиностроении
- •7.3. Важнейшие технологические процессы обрабатывающего производства в машиностроении
- •7.4. Важнейшие технологические процессы сборочного производства в машиностроении
- •Контрольные вопросы
- •Глава 8. Основы технологии легкой промышленности
- •8.1. Общие сведения о легкой промышленности
- •8.2. Общие сведения о текстильных материалах
- •8.3. Основы производства текстильных волокон и нитей
- •8.3.1. Основы производства и характеристика натуральных текстильных волокон
- •8.3.2. Основы производства и характеристика химических текстильных волокон и нитей
- •8.3.3. Классификация, виды и строение текстильных нитей
- •8.3.4. Основные этапы производства пряжи
- •8.4. Основы производства ткани
- •8.4.1. Основы ткачества
- •8.4.2. Отделка тканей
- •8.5. Основы трикотажного производства 8.5.1. Понятие о трикотаже
- •8.5.2. Общие сведения о трикотажных машинах
- •8.5.3. Производство бельевых трикотажных изделий
- •8.5.4. Производство верхних трикотажных изделий
- •8.5.5. Производство чулочно-носочных изделий
- •8.6. Основы производства неткапых текстильных материалов
- •8.6.1. Техпологический процесс производства петканых текстильных материалов
- •8.6.2. Характеристика ассортимента нетканых текстильпых материалов
- •8.7. Основы производства швейных изделий
- •8.7.1. Материалы для изготовления одежды
- •8.7.2. Технологический процесс изготовления швейных изделий
- •8.8. Основы производства пушно-меховых изделий
- •8.8.2. Технология скорняжно-пошивочного производства меховых изделий
- •8.9. Основы производства обуви 8.9.1. Общее понятие об обувных товарах
- •8.9.2. Материалы, используемые при изготовлении обуви
- •Контрольные вопросы
- •Глава 9. Основы технологии химической и нефтехимической промышленности
- •9.1. Общие сведения о химической и нефтехимической промышленности
- •9.2. Основы технологии минеральных удобрений
- •9.2.1. Основы технологии азотных удобрений
- •9.2.2. Основы технологии фосфорных удобрений
- •9.2.3. Основы технологии калийных удобрений
- •9.3. Основы технологии переработки топлива
- •9.3.1. Основы технологии прямой перегонки нефти
- •9.3.2. Основы технологии крекинга нефтепродуктов
- •9.4. Основы технологии производства и переработки полимерных материалов
- •9.4.2. Основные методы производства синтетических полимеров
- •9.4.3. Основы технологии производства изделий из пластмасс
- •Контрольные вопросы
- •Глава 10. Основы технологии строительного производства и изготовления строительных материалов и изделий
- •10.1. Общие сведения о капитальном строительстве и производстве строительных материалов и изделий
- •10.2. Важнейшие технологические процессы капитального строительства
- •10.3. Основы технологии важнейших строительных материалов
- •10.3.1. Классификация и свойства строительных материалов
- •10.3.2. Основы технологии керамики
- •10.3.3. Осповы технологии стекла
- •10.3.4. Основы технологии бетона и железобетона
- •10.3.5. Основы технологии производства древесных строительных материалов
- •Контрольные вопросы
- •Глава 11. Основы технологии пищевой промышленности
- •11.2. Важнейшие технологические процессы пищевой промышленности
- •11.3. Технологические основы важнейших пищевых производств
- •11.3.1. Основы технологии мукомольного производства
- •11.3.2. Основы технологии свеклосахарпого производства
- •11.3.3. Основы технологии кисломолочных продуктов
- •11.3.4. Основы технологии этанола
- •Контрольные вопросы
- •Раздел III. Научные основы производственных технологий
- •Глава 12. Технологический прогресс — основа развития производственной деятельности и общества
- •Контрольные вопросы
- •Глава 13. Экологические проблемы технологического прогресса
- •Контрольные вопросы
- •Глава 14. Прогрессивные технологии автоматизации и информатизации производства
- •14.1. Основы гибкой автоматизированной технологии
- •14.2. Основы робототехники и роботизации промышленного производства
- •14.3. Основы роторной технологии обработки изделий
- •14.4. Программное управление и его системы в промышленном производстве
- •14.5. Основы информационной технологии в управленческой и проектно-конструкторской деятельности
- •Контрольные вопросы
- •Глава 15. Прогрессивные технологии производства и обработки новых конструкционных материалов и изделий
- •15.1. Основы технологии производства композициопных
- •Материалов
- •15.2. Основы технологии порошковой металлургии
- •15.3. Электрические методы обработки изделий
- •15.4. Основы лазерной технологии
- •15.5. Основы ультразвуковой технологии
- •15.6. Основы мембранной технологии
- •15.7. Основы радиациопно-химическои технологии
- •15.8. Основы плазменной и элиоппой технологии
- •15.9. Основы современной биотехпологии
- •Контрольные вопросы
- •Литература
15.8. Основы плазменной и элиоппой технологии
Плазменная технология основана на обработке исходных материалов концентрированными потоками энергии — плазмой.
Плазма — значительно ионизированная и нагретая до 10 000—30 000 °С смесь нейтральных молекул, ионов, которая в отличие от газа ярко светится, обладает электропроводностью и активно взаимодействует с магнитными нолями.
Ныне известно более 50 плазменных технологий. Сформировалась и научная база этой группы технологий — нлазмохи-мия, изучающая процессы, протекающие при сверхвысоких температурах, когда вещество находится в состоянии плазмы.
В плазменных установках (рис. 15.8) в качестве энергоносителя чаще всего используется струя низкотемпературной плазмы.
С помощью электродуговых или высокочастотных разрядов создается высокая (до 30 000 ° С) температура, которая ионизирует газовый поток плазмообразующих газов аргона, гелия, азота или их смесей. При соединении с электронами газ ионизируется и под действием магнитных полей выходит из сопла плазмотрона в виде ярко светящейся струи.
Полученная плазма в качестве энергоносителя направляется на обрабатываемую поверхность изделия, в химический реактор и т.д. В химическом реакторе, например, под воздействием высокой температуры в плазме за тысячные доли секунды протекают химические реакции.
В машиностроении плазменным методом обрабатывают изделия из любых материалов, выполняя прошивание отверстий, резку, наплавку, напыление тугоплавких, износостойких, кор-розионноустойчивых покрытий, сварку и т.д. С помощью плазмы сваривают тугоплавкие металлы, а также неэлектропроводные материалы (стекло, керамика).
411
Плазма используется для химического синтеза органических и неорганических соединений, при производстве композиционных материалов, сверхчистых металлов, высокодисперсных порошков, выращивании монокристаллов и т.д. Плазменные установки дают возможность перерабатывать труднообрабатываемое, но широкодоступное сырье, эффективно изменять физические и физико-химические свойства материалов, получать высокочистые материалы в электронной и особенно химической технологии.
В металлургии вместо доменных печей для процесса восстановления железа вполне можно использовать плазмотроны. При этом вместо кокса или природного газа для процесса восстановления железа могут использоваться самые дешевые топливно-энергетические ресурсы, по существу отходы — угольная пыль и древесная стружка. К тому же плазменные металлургические технологические процессы, в отличие от традиционных, экологически чисты, не выделяют в окружающую среду сернистые и иные вредные газы.
В разных отраслях успешно используется метод плазменного напыления — нанесения на поверхность деталей упрочняющих, термостойких, антикоррозионных, защитных, декоративных и других покрытий. Такие покрытия позволяют улучшить качество, повысить ресурс и надежность машин. Методом плазменного напыления можно восстанавливать изношенные поверхности деталей.
На базе плазменной технологии можно организовать резку стальных плит толщиной до 25 см и плит из цветных металлов толщиной 10—15 см.
При высокой температуре в струе плазмы происходит разложение отходов на элементы с последующим синтезом новых продуктов. Так открывается путь к безотходным экологически чистым технологиям.
Можно назвать и другие сферы высокоэффективного применения плазменных технологий. Однако широкое использование плазменных технологий тормозится слабой изученностью данного класса процессов, иногда слишком большой скоростью их протекания, сравнительно высокой энергоемкостью производства.
Элионная технология использует действие электронных, ионных и рентгеновских остросфокусированных пучков. Одним из важнейших процессов элионной технологии является ионная имплантация.
Ионная имплантация — высокоэффективный физический метод научных исследований и технологической обработки, ос-
412
нованный на взаимодействии управляемых потоков высокоэнергетических ионов с поверхностью твердого тела для направленного изменения его свойств, связанных с атомной структурой. При ионной имплантации обрабатывающие ионы преодолевают поверхностный энергетический барьер, внедряются в поверхностный слой, вызывая повышение концентрации атомов обрабатывающего вещества в последнем; внедрению сопутствует мощное радиационное воздействие, связанное с рассеянием кинетической энергии ионов в сопротивляющейся среде обрабатываемого материала и приводящее к дефектообра-зованию.
Таким образом, ионная имплантация охватывает два взаимосвязанных процесса — внедрение (легирование) и радиационную обработку (дефектообразование). Однако в зависимости от целевого назначения проводимой обработки возможен такой выбор режимов и условий имплантации, когда технологически существенным оказывается лишь один из аспектов этого двуединого процесса.
Под воздействием ионных потоков в поверхностном слое материалов происходит комплекс явлений, включающий изменение элементного состава модифицированного слоя — как с созданием твердых растворов, так и формированием и выделением новых фаз. В кристаллических материалах может происходить изменение параметров решетки и ее типа, размеров и ориентации зерен и блоков кристаллов, вплоть до аморфизации, появления радиационных дефектов, создания внутренних сжимающих и растягивающих напряжений. В зависимости от параметров ионной имплантации происходит изменение свойств поверхностного слоя материалов, таких как твердость, усталость, изнашивание, коэффициент трения, коррозионная стойкость, электрохимическое состояние, каталитическое действие, связи на поверхности, отражательная способность, адгезия, эрозионные свойства.
Использование элионной технологии, несмотря на ее высокую энергоемкость, весьма перспективно для создания новых конструкционных материалов и улучшения свойств традиционных.