
- •Глава 4. Закономерности функционирования технологических процессов ... 42
- •Глава 5. Закономерности формирования, функционирования и развития технологических и технических систем производства 67
- •Глава 9. Основы технологии химической и нефтехимической промыш ленности 231
- •Глава 10. Основы технологии строительного производства и изготовления строительных материалов и изделий ... 271
- •Глава 11. Основы технологии пищевой
- •Предисловие
- •Раздел I. Теоретические основы производственных технологий
- •Глава 1. Введение в технологию
- •1.1. Место технологии в современном обществе и производстве
- •1.2. Понятие и цель изучения технологии
- •Контрольные вопросы
- •Глава 2. Закономерности формирования технологических процессов
- •2.1. Понятие технологического процесса
- •2.2. Структура и организация технологических процессов
- •2.3. Затраты труда в ходе осуществления технологического процесса. Понятие идеальной технологии
- •2.4. Параметры (показатели) техпологического процесса
- •Контрольные вопросы
- •Глава 3. Закономерности развития технологических процессов
- •3.1. Технологическое развитие как ключевое звепо совершенствования промышленного производства и развития общества
- •3.2. Динамика трудозатрат при развитии техпологических процессов
- •3.3. Рационалистическое развитие технологических процессов
- •3.4. Эволюционное развитие технологических процессов
- •3.5. Революционное развитие технологических процессов
- •Контрольные вопросы
- •Глава 4. Закономерности функционирования технологических процессов
- •4.1. Общие принципы классификации технологических процессов
- •4.2. Физические процессы, используемые в технологии 4.2.1. Механические процессы
- •4.2.2. Гидромеханические процессы
- •4.2.3. Тепловые процессы
- •4.2.4. Массообменные процессы
- •4.3. Химические процессы в технологии
- •4.4. Биологические процессы в технологии
- •Контрольные вопросы
- •Глава 5. Закономерности формирования,
- •5.2. Классификация технологических систем
- •И функционирования
- •5.3. Закономерности развития и оптимизации технологических систем
- •5.4. Понятие технических систем, законы строения и развития технических систем
- •5.5. Методы и модели оценки научно-технологического развития производства
- •Раздел II. Практические основы производственных технологий
- •Глава 6. Общие сведения о технологической структуре хозяйственного комплекса республики беларусь
- •Глава 7. Основы технологии машиностроительного производства
- •7.1. Общие сведения о машиностроении
- •7.2. Важнейшие технологические процессы заготовительного производства в машиностроении
- •7.3. Важнейшие технологические процессы обрабатывающего производства в машиностроении
- •7.4. Важнейшие технологические процессы сборочного производства в машиностроении
- •Контрольные вопросы
- •Глава 8. Основы технологии легкой промышленности
- •8.1. Общие сведения о легкой промышленности
- •8.2. Общие сведения о текстильных материалах
- •8.3. Основы производства текстильных волокон и нитей
- •8.3.1. Основы производства и характеристика натуральных текстильных волокон
- •8.3.2. Основы производства и характеристика химических текстильных волокон и нитей
- •8.3.3. Классификация, виды и строение текстильных нитей
- •8.3.4. Основные этапы производства пряжи
- •8.4. Основы производства ткани
- •8.4.1. Основы ткачества
- •8.4.2. Отделка тканей
- •8.5. Основы трикотажного производства 8.5.1. Понятие о трикотаже
- •8.5.2. Общие сведения о трикотажных машинах
- •8.5.3. Производство бельевых трикотажных изделий
- •8.5.4. Производство верхних трикотажных изделий
- •8.5.5. Производство чулочно-носочных изделий
- •8.6. Основы производства неткапых текстильных материалов
- •8.6.1. Техпологический процесс производства петканых текстильных материалов
- •8.6.2. Характеристика ассортимента нетканых текстильпых материалов
- •8.7. Основы производства швейных изделий
- •8.7.1. Материалы для изготовления одежды
- •8.7.2. Технологический процесс изготовления швейных изделий
- •8.8. Основы производства пушно-меховых изделий
- •8.8.2. Технология скорняжно-пошивочного производства меховых изделий
- •8.9. Основы производства обуви 8.9.1. Общее понятие об обувных товарах
- •8.9.2. Материалы, используемые при изготовлении обуви
- •Контрольные вопросы
- •Глава 9. Основы технологии химической и нефтехимической промышленности
- •9.1. Общие сведения о химической и нефтехимической промышленности
- •9.2. Основы технологии минеральных удобрений
- •9.2.1. Основы технологии азотных удобрений
- •9.2.2. Основы технологии фосфорных удобрений
- •9.2.3. Основы технологии калийных удобрений
- •9.3. Основы технологии переработки топлива
- •9.3.1. Основы технологии прямой перегонки нефти
- •9.3.2. Основы технологии крекинга нефтепродуктов
- •9.4. Основы технологии производства и переработки полимерных материалов
- •9.4.2. Основные методы производства синтетических полимеров
- •9.4.3. Основы технологии производства изделий из пластмасс
- •Контрольные вопросы
- •Глава 10. Основы технологии строительного производства и изготовления строительных материалов и изделий
- •10.1. Общие сведения о капитальном строительстве и производстве строительных материалов и изделий
- •10.2. Важнейшие технологические процессы капитального строительства
- •10.3. Основы технологии важнейших строительных материалов
- •10.3.1. Классификация и свойства строительных материалов
- •10.3.2. Основы технологии керамики
- •10.3.3. Осповы технологии стекла
- •10.3.4. Основы технологии бетона и железобетона
- •10.3.5. Основы технологии производства древесных строительных материалов
- •Контрольные вопросы
- •Глава 11. Основы технологии пищевой промышленности
- •11.2. Важнейшие технологические процессы пищевой промышленности
- •11.3. Технологические основы важнейших пищевых производств
- •11.3.1. Основы технологии мукомольного производства
- •11.3.2. Основы технологии свеклосахарпого производства
- •11.3.3. Основы технологии кисломолочных продуктов
- •11.3.4. Основы технологии этанола
- •Контрольные вопросы
- •Раздел III. Научные основы производственных технологий
- •Глава 12. Технологический прогресс — основа развития производственной деятельности и общества
- •Контрольные вопросы
- •Глава 13. Экологические проблемы технологического прогресса
- •Контрольные вопросы
- •Глава 14. Прогрессивные технологии автоматизации и информатизации производства
- •14.1. Основы гибкой автоматизированной технологии
- •14.2. Основы робототехники и роботизации промышленного производства
- •14.3. Основы роторной технологии обработки изделий
- •14.4. Программное управление и его системы в промышленном производстве
- •14.5. Основы информационной технологии в управленческой и проектно-конструкторской деятельности
- •Контрольные вопросы
- •Глава 15. Прогрессивные технологии производства и обработки новых конструкционных материалов и изделий
- •15.1. Основы технологии производства композициопных
- •Материалов
- •15.2. Основы технологии порошковой металлургии
- •15.3. Электрические методы обработки изделий
- •15.4. Основы лазерной технологии
- •15.5. Основы ультразвуковой технологии
- •15.6. Основы мембранной технологии
- •15.7. Основы радиациопно-химическои технологии
- •15.8. Основы плазменной и элиоппой технологии
- •15.9. Основы современной биотехпологии
- •Контрольные вопросы
- •Литература
15.6. Основы мембранной технологии
Мембранная технология — новый принцип организации и осуществления процесса разделения веществ через полупроницаемую перегородку, отличающийся отсутствием поглощения разделяемых компонентов и низкими энергетическими затратами на процесс разделения.
По сравнению с традиционными процессами разделения неоднородных систем мембранная технология выгодно отличается высокой энерго- и ресурсоэкономичностыо, простотой аппаратурного оформления, экологической чистотой.
Слово «мембрана» имеет латинское происхождение (тет-Ъгапа) и означает «кожица», «перепонка». В технологии под мембраной мы будем понимать перегородку, обладающую различной проницаемостью по отношению к отдельным компонентам жидких и газовых неоднородных смесей.
При внешпем сходстве процессов фильтрования и мембранного разделения между ними есть принципиальное отличие. В ходе фильтрования хотя бы один из компонентов газовой или жидкой смеси задерживается и фиксируется внутри фильтрующей перегородки. Ото приводит к тому, что перегородка постепенно забивается и осуществление процесса фильтрования на ней без очистки делается практически невозможным. В отличие от фильтра мембрана не фиксирует в себе ни один из компонентов разделяемой жидкой или газовой смеси, а только делит первоначальный поток на два, один из которых обогащен по сравнению с исходным каким-либо компонентом. Такой принцип действия мембраны делает ее срок службы практически неограниченным, без заметного изменения в эффективности разделения смесей.
В зависимости от материала, из которого изготовляют мембраны, их делят на полимерные, металлические, стеклянные, керамические или композиционные.
406
По механизму мембранного действия различают диффузионные, адсорбционные и ионообменные мембраны.
В зависимости от агрегатного состояния разделяемой смеси, движущей силы процесса разделения, размеров частиц компонентов и механизма разделения различают следующие разновидности мембранных процессов:
диффузионное разделение газов;
разделение жидкостей методом испарения через мембрану;
баромембранные процессы разделения жидких смесей;
электродиализ.
Диффузионное разделение газов основано на различной проницаемости мембран для отдельных компонентов газовых смесей. Для осуществления диффузионного разделения газовых смесей используются как сплошные, так и пористые мембраны с размерами пор меньшими, чем длина свободного пробега молекул газов при заданном давлении. Движущей силой процессов диффузии компонентов является разность их концентраций на противоположных поверхностях мембраны.
Диффузионное разделение газов сегодня является наиболее крупномасштабным и экономичным методом, который широко используется для получения урана-235, являющегося ядерным топливом; создания аппаратов «искусственное легкое»; при производстве водорода, выделении гелия из состава природных и нефтяных газов; для создания контролируемой атмосферы, обогащенной диоксидом углерода. Созданы и используются специальные пленки, которые помогают длительное время сохранять качество завернутых в них овощей, фруктов, цветов. В основе такой технологии лежит свойство полимерных мембран разделять воздух на молекулярном уровне: в результате в нем становится меньше кислорода, что резко замедляет процессы гниения.
Разделение жидкостей методом испарения через мембрану основано на различной диффузионной проницаемости мембран для паров веществ. Движущей силой процесса является разность концентраций или давлений. Смесь жидкостей, находящихся в контакте с мембраной, нагревают, а пары, проникающие через мембрану, отводят с помощью вакуумирования или потоком инертного газа. Наиболее широко этот метод применяется при разделении азеотропных смесей, а также смесей веществ, имеющих невысокую термическую стабильность.
Баромембранные процессы разделении жидких смесей осуществляются под избыточным давлением. Установки, работающие на принципе баромембранного разделения, широко используются для обессоливания морской и соленой воды, очист-
407
ки сточных вод, извлечения ценных компонентов из разбавленных растворов. В пищевой промышленности они применяются для концентрирования сахарных сиропов, фруктовых и овощных соков; в электронной промышленности, медицине и фармацевтике — для получения ультрачистой воды.
Если мембранный процесс используют для отделения от идеального раствора крупных коллоидных или взвешенных микрочастиц размером 0,1—10 мкм, то его называют микрофильтрацией, или мембранной фильтрацией.
Микрофильтрация нашла широкое применение в микробиологической промышленности при концентрировании водных растворов ферментов, белков, нуклеиновых кислот, полисахаридов и других веществ, а также для очистки сточных вод в химической, пищевой и целлюлозно-бумажной промышленности.
Электродиализ можно определить как перенос ионов через мембрану под действием электрического тока. При наличии мембран, избирательно пропускающих одни ионы и задерживающих другие, можно решать задачи выделения ценных компонентов из растворов, обессоливания воды и снижения ее жесткости, очистки сточных вод и др.
В зависимости от способа укладки мембран аппараты для мембранных процессов могут быть следующих типов:
с плоскими мембранными элементами;
с трубчатыми мембранными элементами;
с мембранными элементами рулонного типа;
с мембранными элементами в виде полых волокон.
Достоинствами плоскокамерных аппаратов являются простота их устройства и надежность в работе, недостатками — трудоемкость изготовления, высокая металлоемкость, низкая плотность укладки мембран в единице объема, невысокая интенсивность процесса мембранного разделения.
Преимуществами трубчатых разделительных аппаратов являются нетребовательность к предварительной очистке разделяемых смесей, высокая удельная поверхность мембраны в аппарате, легкость очистки поверхности мембран от осадков, интенсивный режим работы. Недостатки трубчатых разделительных аппаратов обусловлены в первую очередь высокой стоимостью их изготовления.
К достоинствам аппаратов с элементами рулонного типа следует отнести высокую плотность упаковки мембран в единице объема, удобство монтажа и демонтажа разделительного элемента в аппарате, возможность предварительного контроля качества мембранной поверхности. Недостаток таких аппара-
408
тов — необходимость тщательной предварительной подготовки разделяемой смеси, что увеличивает стоимость процесса мембранного разделения.
Основными преимуществами разделительных аппаратов с полыми волокнами являются высокая удельная производительность, простота устройства и эксплуатации. Однако эти аппараты недешевы.
Перспективность мембранных методов — прежде всего в их универсальности. Скоро нельзя будет представить ни одной технологической линии в пищевой, медицинской, фармацевтической и ряде других отраслей промышленности, в которой не было бы установок для мембранного синтеза, разделения, концентрирования и очистки продуктов.