
- •Глава 4. Закономерности функционирования технологических процессов ... 42
- •Глава 5. Закономерности формирования, функционирования и развития технологических и технических систем производства 67
- •Глава 9. Основы технологии химической и нефтехимической промыш ленности 231
- •Глава 10. Основы технологии строительного производства и изготовления строительных материалов и изделий ... 271
- •Глава 11. Основы технологии пищевой
- •Предисловие
- •Раздел I. Теоретические основы производственных технологий
- •Глава 1. Введение в технологию
- •1.1. Место технологии в современном обществе и производстве
- •1.2. Понятие и цель изучения технологии
- •Контрольные вопросы
- •Глава 2. Закономерности формирования технологических процессов
- •2.1. Понятие технологического процесса
- •2.2. Структура и организация технологических процессов
- •2.3. Затраты труда в ходе осуществления технологического процесса. Понятие идеальной технологии
- •2.4. Параметры (показатели) техпологического процесса
- •Контрольные вопросы
- •Глава 3. Закономерности развития технологических процессов
- •3.1. Технологическое развитие как ключевое звепо совершенствования промышленного производства и развития общества
- •3.2. Динамика трудозатрат при развитии техпологических процессов
- •3.3. Рационалистическое развитие технологических процессов
- •3.4. Эволюционное развитие технологических процессов
- •3.5. Революционное развитие технологических процессов
- •Контрольные вопросы
- •Глава 4. Закономерности функционирования технологических процессов
- •4.1. Общие принципы классификации технологических процессов
- •4.2. Физические процессы, используемые в технологии 4.2.1. Механические процессы
- •4.2.2. Гидромеханические процессы
- •4.2.3. Тепловые процессы
- •4.2.4. Массообменные процессы
- •4.3. Химические процессы в технологии
- •4.4. Биологические процессы в технологии
- •Контрольные вопросы
- •Глава 5. Закономерности формирования,
- •5.2. Классификация технологических систем
- •И функционирования
- •5.3. Закономерности развития и оптимизации технологических систем
- •5.4. Понятие технических систем, законы строения и развития технических систем
- •5.5. Методы и модели оценки научно-технологического развития производства
- •Раздел II. Практические основы производственных технологий
- •Глава 6. Общие сведения о технологической структуре хозяйственного комплекса республики беларусь
- •Глава 7. Основы технологии машиностроительного производства
- •7.1. Общие сведения о машиностроении
- •7.2. Важнейшие технологические процессы заготовительного производства в машиностроении
- •7.3. Важнейшие технологические процессы обрабатывающего производства в машиностроении
- •7.4. Важнейшие технологические процессы сборочного производства в машиностроении
- •Контрольные вопросы
- •Глава 8. Основы технологии легкой промышленности
- •8.1. Общие сведения о легкой промышленности
- •8.2. Общие сведения о текстильных материалах
- •8.3. Основы производства текстильных волокон и нитей
- •8.3.1. Основы производства и характеристика натуральных текстильных волокон
- •8.3.2. Основы производства и характеристика химических текстильных волокон и нитей
- •8.3.3. Классификация, виды и строение текстильных нитей
- •8.3.4. Основные этапы производства пряжи
- •8.4. Основы производства ткани
- •8.4.1. Основы ткачества
- •8.4.2. Отделка тканей
- •8.5. Основы трикотажного производства 8.5.1. Понятие о трикотаже
- •8.5.2. Общие сведения о трикотажных машинах
- •8.5.3. Производство бельевых трикотажных изделий
- •8.5.4. Производство верхних трикотажных изделий
- •8.5.5. Производство чулочно-носочных изделий
- •8.6. Основы производства неткапых текстильных материалов
- •8.6.1. Техпологический процесс производства петканых текстильных материалов
- •8.6.2. Характеристика ассортимента нетканых текстильпых материалов
- •8.7. Основы производства швейных изделий
- •8.7.1. Материалы для изготовления одежды
- •8.7.2. Технологический процесс изготовления швейных изделий
- •8.8. Основы производства пушно-меховых изделий
- •8.8.2. Технология скорняжно-пошивочного производства меховых изделий
- •8.9. Основы производства обуви 8.9.1. Общее понятие об обувных товарах
- •8.9.2. Материалы, используемые при изготовлении обуви
- •Контрольные вопросы
- •Глава 9. Основы технологии химической и нефтехимической промышленности
- •9.1. Общие сведения о химической и нефтехимической промышленности
- •9.2. Основы технологии минеральных удобрений
- •9.2.1. Основы технологии азотных удобрений
- •9.2.2. Основы технологии фосфорных удобрений
- •9.2.3. Основы технологии калийных удобрений
- •9.3. Основы технологии переработки топлива
- •9.3.1. Основы технологии прямой перегонки нефти
- •9.3.2. Основы технологии крекинга нефтепродуктов
- •9.4. Основы технологии производства и переработки полимерных материалов
- •9.4.2. Основные методы производства синтетических полимеров
- •9.4.3. Основы технологии производства изделий из пластмасс
- •Контрольные вопросы
- •Глава 10. Основы технологии строительного производства и изготовления строительных материалов и изделий
- •10.1. Общие сведения о капитальном строительстве и производстве строительных материалов и изделий
- •10.2. Важнейшие технологические процессы капитального строительства
- •10.3. Основы технологии важнейших строительных материалов
- •10.3.1. Классификация и свойства строительных материалов
- •10.3.2. Основы технологии керамики
- •10.3.3. Осповы технологии стекла
- •10.3.4. Основы технологии бетона и железобетона
- •10.3.5. Основы технологии производства древесных строительных материалов
- •Контрольные вопросы
- •Глава 11. Основы технологии пищевой промышленности
- •11.2. Важнейшие технологические процессы пищевой промышленности
- •11.3. Технологические основы важнейших пищевых производств
- •11.3.1. Основы технологии мукомольного производства
- •11.3.2. Основы технологии свеклосахарпого производства
- •11.3.3. Основы технологии кисломолочных продуктов
- •11.3.4. Основы технологии этанола
- •Контрольные вопросы
- •Раздел III. Научные основы производственных технологий
- •Глава 12. Технологический прогресс — основа развития производственной деятельности и общества
- •Контрольные вопросы
- •Глава 13. Экологические проблемы технологического прогресса
- •Контрольные вопросы
- •Глава 14. Прогрессивные технологии автоматизации и информатизации производства
- •14.1. Основы гибкой автоматизированной технологии
- •14.2. Основы робототехники и роботизации промышленного производства
- •14.3. Основы роторной технологии обработки изделий
- •14.4. Программное управление и его системы в промышленном производстве
- •14.5. Основы информационной технологии в управленческой и проектно-конструкторской деятельности
- •Контрольные вопросы
- •Глава 15. Прогрессивные технологии производства и обработки новых конструкционных материалов и изделий
- •15.1. Основы технологии производства композициопных
- •Материалов
- •15.2. Основы технологии порошковой металлургии
- •15.3. Электрические методы обработки изделий
- •15.4. Основы лазерной технологии
- •15.5. Основы ультразвуковой технологии
- •15.6. Основы мембранной технологии
- •15.7. Основы радиациопно-химическои технологии
- •15.8. Основы плазменной и элиоппой технологии
- •15.9. Основы современной биотехпологии
- •Контрольные вопросы
- •Литература
4.2.3. Тепловые процессы
К тепловым относятся процессы, скорость которых определяется скоростью переноса энергии в форме теплоты: нагревание, охлаждение, испарение, плавление и др. Процессы переноса теплоты часто сопутствуют другим технологическим процессам: химического взаимодействия, разделения смесей и т.д.
По механизму переноса энергии различают три способа распространения теплоты — теплопроводность, конвективный перенос и тепловое излучение.
Теплопроводность — перенос энергии микрочастицами (молекулами, ионами, электронами) за счет их колебаний при тесном соприкосновении.
Процесс протекает по молекулярному механизму и поэтому теплопроводность зависит от внутреннего молекулярного строения рассматриваемого тела и является постоянной величиной.
Конвективный перенос теплоты (конвекция) — процесс переноса теплоты от стенки к движущейся относительно нее жидкости (газу) или от жидкости (газа) к стенке. Таким образом, он обусловлен массовым движением вещества и происходит одновременно путем теплопроводности и конвекции.
В зависимости от причины, вызывающей движение жидкости, различают вынужденную и естественную конвекцию. При вынужденной конвекции движение обусловлено действием внешней силы — разности давлений, создаваемой насосом, вентилятором или иным источником (в том числе и природного происхождения, например, ветром). При естественной конвекции движение возникает вследствие изменения плотности самой жидкости (газа), обусловленного термическим расширением.
Тепловое излучение — перенос энергии в форме электромагнитных колебаний, поглощаемых телом. Источниками этих колебаний являются заряженные частицы — электроны и ионы, входящие в состав излучающего вещества. При высоких температурах тел тепловое излучение становится преобладающим по сравнению с теплопроводностью и конвективным обменом.
51
На практике теплота чаще всего передается одновременно двумя (или даже тремя) способами, однако превалирующее значение обычно имеет какой-либо один способ передачи теплоты.
При любом механизме переноса теплоты (теплопроводностью, конвекцией или тепловым излучением) количество передаваемого тепла пропорционально поверхности, разности температур и соответствующему коэффициенту теплоотдачи.
В наиболее распространенном случае теплота передается от одной среды к другой через разделяющую их стенку. Такой вид теплообмена называется теплопередачей, а участвующие в ней среды — теплоносителями. Процесс теплопередачи состоит из трех стадий: 1) передача теплоты стенке нагретой средой (теплоотдача); 2) перенос теплоты в стенке (теплопроводность); 3) перенос теплоты от нагретой стенки в холодную среду (теплоотдача).
На практике широко применяются следующие разновидности тепловых процессов:
процессы нагревания и охлаждения;
процессы выпаривания, испарения, конденсации;
процессы искусственного охлаждения;
плавление и кристаллизация.
Нагревание и охлаждение сред проводят в аппаратах, называемых теплообменниками.
Наибольшее распространение получили кожухотрубчатые теплообменники, представляющие собой пучок параллельных труб, помещенных в общий кожух с герметично подсоединенными к нему по концам трубными досками. Хорошие условия теплопередачи обеспечиваются в теплообменниках типа «труба в трубе», в которых одна жидкость движется по внутренней трубе, а вторая — в противоположном направлении в кольцевом пространстве между внутренней и наружной трубами.
В тех случаях, когда различие физических свойств обменивающихся теплотой сред велико, эффективно применение со стороны газа оребренных теплообменных поверхностей (например, в радиаторах автомобилей, некоторых типах батарей водяного отопления).
Для передачи тепла при нагревании используют вещества, называемые теплоносителями.
Наиболее распространенным теплоносителем является водяной пар. Для нагревания до температур более 180—200 ° С используются высокотемпературные теплоносители: нагретая вода, расплавленные соли, ртуть и жидкие металлы, органические соединения, минеральные масла.
Во многих процессах, протекающих при высоких температурах, используется нагревание топочными газами, получае-
52
мыми в печах. Таковы, например, процессы обжига и сушки, широко распространенные в производствах строительных материалов, химической и целлюлозно-бумажной промышленности.
Для нагревания в широком диапазоне температур применяется электрический нагрев. Электронагреватели удобны для регулирования, обеспечивают создание хороших санитарно-гигиенических условий, но относительно дороги.
Для охлаждения сред используют вещества, называемые хладагентами.
Наиболее распространенным хладагентом является вода. Однако в связи с быстро возрастающим дефицитом воды во всем мире большое значение приобретает использование в данном качестве воздуха. Теплофизические свойства воздуха неблагоприятны (малые теплоемкость, теплопроводность, плотность), поэтому коэффициенты теплоотдачи к воздуху ниже, чем к воде. Для устранения этого недостатка повышают скорость движения воздуха для увеличения коэффициента теплоотдачи, оребряют трубы со стороны воздуха, увеличивая поверхность теплообмена, а также распыляют в воздух воду, испарение которой понижает температуру воздуха и увеличивает за счет этого движущую силу процесса теплообмена.
Выпаривание — процесс удаления растворителя в виде пара из раствора нелетучего вещества при его кипении. Выпаривание применяется для выделения нелетучих веществ в твердом виде, концентрирования их растворов, а также получения чистого растворителя (последнее осуществляется, например, опреснительными установками).
Чаще всего выпариванию подвергаются водные растворы, а теплоносителем служит водяной пар. Движущей силой процесса является разность температур теплоносителя и кипящего раствора. Процесс выпаривания проводится в выпарных аппаратах.
Испарение — процесс удаления жидкой фазы в виде пара из различных сред, главным образом путем их нагрева или создания иных условий для испарения.
Испарение осуществляется при проведении многих процессов. В частности, в методах искусственного охлаждения применяют испарение различных жидкостей, обладающих низкими (обычно — отрицательными) температурами кипения.
Конденсацию пара (газа) осуществляют либо путем охлаждения пара (газа), либо посредством охлаждения и сжатия одновременно. Конденсацию используют при выпаривании, вакуум-сушке для создания разрежения. Пары, подлежащие конденсации, отводят из аппарата, в котором они образуются, в закрытый аппарат, охлаждаемый водой или воздухом и служащий для сбора паров-конденсатов.
53
Процесс конденсации осуществляется в конденсаторах смешения или поверхностных конденсаторах.
В конденсаторах смешения пар непосредственно соприкасается с охлаждаемой водой и полученный конденсат с ней смешивается. Так проводят конденсацию, если конденсируемые пары не представляют ценности.
В поверхностных конденсаторах тепло отнимается от конденсирующегося пара через стенку. Наиболее часто пар конденсируется на внутренних или внешних поверхностях труб, омываемых с другой стороны водой или воздухом. Конденсат отводят отдельно от хладагента, и если он представляет ценность, используют.
Процессы искусственного охлаждения применяют при некоторых процессах абсорбции, при кристаллизации, разделении газов, сублимационной сушке, для хранения пищевых продуктов, кондиционирования воздуха. Большое значение приобрели такие процессы в металлургии, электротехнике, электронике, ядерной, ракетной, вакуумной и других отраслях. Так, используя глубокое охлаждение, путем частичного или полного сжижения разделяют газовые смеси для получения многих технологически важных газов (например, азот, кислород и др.).
Искусственное охлаждение всегда связано с переносом тепла от тела с более низкой температурой к телу с более высокой температурой, что требует затрат энергии. Поэтому введение энергии в систему является необходимым условием получения холода. Оно достигается следующими основными методами:
испарением низкокилящих жидкостей. При испарении такие жидкости, имеющие обычно отрицательные температуры кипения, охлаждаются до температуры кипения;
расширением газов дросселированием, путем пропускания их через устройство, вызывающее сужение потока (шайбу с отверстием, вентиль) с последующим его расширением. Энергия, необходимая для расширения газа (для преодоления сил сцепления между молекулами) при дросселировании, когда нет потока тепла извне, может быть получена только за счет внутренней энергии самого газа;
расширением газа в детандере — машине, устроенной подобно поршневому или турбокомпрессору, — газовом двигателе, который одновременно совершает внешнюю работу (перекачивает жидкости, нагнетает газы). Расширение сжатого газа в детандере происходит без обмена теплом с окружающей средой. При этом совершаемая газом работа производится за счет его внутренней энергии, в результате чего газ охлаждается.
54
Плавление используется для подготовки полимеров к формованию (прессованию, литью под давлением, экструзии и т.д.), металлов и сплавов к литью различными способами, стеклянной шихты к варке и выполнения многих других технологических процессов.
Наиболее распространенным способом плавления является передача тепла через металлическую стенку, обогреваемую любым способом: теплопроводностью, конвективным переносом или тепловым излучением без удаления расплава. При этом скорость плавления определяется только условиями теплопередачи: коэффициентом теплопроводности стенки, градиентом температур и площадью контакта.
В практике достаточно часто используют плавление электрической, химической и другими видами энергии (индукционный, высокочастотный нагрев и т.д.), сжатием.
Кристаллизация — процесс выделения твердых веществ из насыщенных растворов или расплавов. Это процесс, обратный плавлению. Таким образом, тепловой эффект кристаллизации равен по величине и противоположен по знаку тепловому эффекту плавления. Каждому химическому соединению соответствует одна, а чаще несколько кристаллических форм, отличающихся положением и числом осей симметрии (металлы, сплавы металлов). Это явление носит название полиморфизма (аллотропии).
Обычно кристаллизацию осуществляют из водных растворов, понижая растворимость кристаллизуемого вещества за счет изменения температуры раствора или удаления части растворителя. Использование данного способа характерно для производства минеральных удобрений, солей, получения ряда полупродуктов и продуктов из растворов органических веществ (спиртов, эфиров, углеводородов). Такую кристаллизацию называют изотермической, так как испарение из растворов идет при постоянной температуре.
Кристаллизация из расплавов осуществляется путем их охлаждения водой, воздухом. Из кристаллизующихся материалов (металлов, их сплавов, полимерных материалов и композитов на их основе) получают разнообразные изделия методами прессования, литья, экструзии и т.д.