
- •2 Понятие технологии
- •4.Структура технологического процесса.
- •5.Затраты труда в ходе осуществления технологического процесса
- •6.7.Параметры,принципы технологического процесса
- •8.Процессы сортировки,смешивания,дозирования
- •9. Гидромеханические процессы
- •10.Тепловые процессы
- •11. Массообменные процессы
- •12. Химические процессы в технологии
- •13.Биологические процессы
- •Технологическое развитие как ключевое звено совершенствования промышленного производства и развития общества.
- •15. Динамика трудозатрат при развитии технологического процесса
- •16.Рационалистическое развитие технологических процессов и его закономерности.
- •18.Понятие системы технологических процессов, классификация и закономерности развития
- •19. Техническая система
- •20. Законы развития технических систем
- •21.Технологические основы стандартизации и унификации
- •22. Качество продукции и его показатели
- •25.Важнейшие технологические процессы обрабатывающего производства в машиностроении
- •26. Важнейшие технологические процессы сборочного производства.
- •27. Чугун и сталь. Производство и применение
- •Цветные металлы.Свойства и применение
- •Литейное производство и характеристики его видов
- •30.Классификация текстильных материалов
- •31. Основные характеристики натуральных волокон
- •32. Основы технологии производства минеральных удобрений
- •34. Основы технологии производства и переработки полимерных материалов
- •35. Важнейшие технологические процессы капитального строительства
- •36. Основы технологии важнейших строительных материалов
- •37. Основы гибкой автоматизированной технологии
- •38.Основы робототехники и робототехнологии
- •39. Основы роторной обработки изделий
- •40.Основы информационной технологии в управленческой и проектно-конструкторской деятельности.
- •41. Основы технологии производства композиционных материалов
- •42.Основы технологии порошковой металлургии
- •Изготовление порошковых изделий
- •43.Электрические методы обработки изделий
- •44.Основы лазерной технологии и области ее применения
- •45. Основы ультразвуковой технологии и область ее применения
- •46 Основы мембранной технологии
- •47 Основы радиациопно-химическои технологии
- •48 Основы плазменной и элиоппой технологии
- •49. Основы современной биотехнологии и направления ее развития
- •50.Основы нанотехнологии
48 Основы плазменной и элиоппой технологии
Плазменная технология основана на обработке исходных материалов концентрированными потоками энергии — плазмой.
Плазма — значительно ионизированная и нагретая до 10 000—30 000 °С смесь нейтральных молекул, ионов, которая в отличие от газа ярко светится, обладает электропроводностью и активно взаимодействует с магнитными нолями.
Ныне известно более 50 плазменных технологий. Сформировалась и научная база этой группы технологий — нлазмохи-мия, изучающая процессы, протекающие при сверхвысоких температурах, когда вещество находится в состоянии плазмы.
В плазменных установках в качестве энергоносителя чаще всего используется струя низкотемпературной плазмы.
Плазма используется для химического синтеза органических и неорганических соединений, при производстве композиционных материалов, сверхчистых металлов, высокодисперсных порошков, выращивании монокристаллов и т.д. Плазменные установки дают возможность перерабатывать труднообрабатываемое, но широкодоступное сырье, эффективно изменять физические и физико-химические свойства материалов, получать высокочистые материалы в электронной и особенно химической технологии.
Элионная технология использует действие электронных, ионных и рентгеновских остросфокусированных пучков. Одним из важнейших процессов элионной технологии является ионная имплантация.
Ионная имплантация — высокоэффективный физический метод научных исследований и технологической обработки, основанный на взаимодействии управляемых потоков высокоэнергетических ионов с поверхностью твердого тела для направленного изменения его свойств, связанных с атомной структурой. Таким образом, ионная имплантация охватывает два взаимосвязанных процесса — внедрение (легирование) и радиационную обработку (дефектообразование). Однако в зависимости от целевого назначения проводимой обработки возможен такой выбор режимов и условий имплантации, когда технологически существенным оказывается лишь один из аспектов этого двуединого процесса.
Использование элионной технологии, несмотря на ее высокую энергоемкость, весьма перспективно для создания новых конструкционных материалов и улучшения свойств .
49. Основы современной биотехнологии и направления ее развития
В узком смысле биотехнологиями называют использование живых организмов в производстве и переработке различных продуктов. Некоторые биотехнологические процессы с древних времен использовались в хлебопечении, в приготовлении вина и пива, уксуса, сыра, при различных способах переработки кож, растительных волокон и др. Современные биотехнологии основаны главным образом на культивировании микроорганизмов (бактерий и микроскопических грибов), животных и растительных клеток.
В широком смысле биотехнологиями называются технологиии, использующие живые организмы или продукты их жизнедеятельности. Или можно сформулировать так: биотехнологии связаны с тем, что возникло биогенным путем. В нашем обзоре мы используем термин биотехнологии в широком смысле.
Основными направлениями развития современных биотехнологий являются следующие: медицинские биотехнологии, агробиотехнологии и экологические биотехнологии.
Медицинские биотехнологии подразделяются на диагностические и лечебные.
Диагностические медицинские биотехнологии подразделяются нахимические (определение диагностических веществ и параметров их обмена) и физические (определение физических полей организма).
Определение физических полей человеческого организма имеет большое диагностическое значение. Физическая диагностика дешевле и быстрее, чем химическая, поэтому ее роль в будущем будет возрастать.
Раньше диагностические химические биотехнологии сводились к определению в тканях и биологических жидкостях веществ, имеющих диагностическое значение. Назовем этот подход статическим. В настоящее время диагностика использует определение скоростей образования и распада представляющих интерес веществ, а также определение активности ферментов, осуществляющих соответственно синтез и деградацию этих веществ. Назовем этот подход динамическим. И наконец диагностика стала оценивать влияние на метаболизм диагностических веществ определенных функциональных воздействий. Такой подход можно назвать функциональным. Он позволяет выявить резервные возможности организма.