- •1. Вид эконометрической модели, ее структура. Уравнение регрессионной модели. Переменные участвующие в любой эконометрической модели.
- •3.Корреляционное поле. (Диаграмма рассеяния).
- •4.Основные статистики, спользуемые в экономических моделях. Средняя величина, дисперсия (вариация), ковариация.
- •5. Коэффициент парной корреляции. Пределы ее изменения.
- •6. Оценка значимости линейного коэффициента корреляции с помощью t-критерия Стьюдента.
- •7 . Матрица коэффициентов парной корреляции, её структура, экономическая сущность.
- •8. Коэффициент множественной корреляции, приделы его измерения.
- •9. Проверка значимости коэффициента множественной корреляции и детерминации с помощью f-критерия Фишера
- •10. Частный коэффициент множественной корреляции, пределы его измерения
- •11. Предпосылки метода наименьших квадратов.
- •12. Свойства оценок регрессионной модели, полученные по мнк.
- •13. Формулы расчета оценок а0 и а1 в модели парной регрессии.
- •18. Проверка значимости уравнения регрессии с помощью f критерия Фишера .Расчетный и табличный критерий Фишера.
- •20. Оценка статистической значимости параметров модели с помощью критерия Стьюдента.
- •21. Стандартные ошибки коэффициентов Sa0 Sa1 и их расчет
- •22. Расчет доверительных интервалов для параметров парной регрессии
- •23. Определение прогнозного значения по эконометрической модели парной регрессии.Точный и интервальный прогноз.
- •24. Виды моделей множественной регрессии (м.Р.)
- •25. Что показывает коэффициент регрессии aj в модели множественной регрессии?
- •26. Соотношение между числом наблюдений и числом оцениваемых параметров при построении множественной регрессионной модели.
- •27. Матричная форма записи множественного регрессионного уравнения и оценка параметров модели.
- •28. Система нормальных уравнений для двухфакторной регрессионной модели.
- •30. Проверка качества построенной множественной регрессионной модели: коэффициент детерминации, множественный коэффициент корреляции, относительная ошибка аппроксимации.
- •31. Проверка значимости построенной множественной регрессионной модели.
- •32. Проверка статистической значимости параметров множественной регрессионной модели.
- •33. Построение доверительных интервалов для параметров мрм. Предельная ошибка параметра.
- •35. Коэффициент эластичности
- •36. Мультиколлинеарность: определение, признаки и последствия.
- •Наиболее полным алгоритмом исследования мультиколлинеарности есть алгоритм Фаррара-Глобера. С его помощью тестируют три вида мультиколлинеарности:
- •1. Всех факторов ( - хи-квадрат);
- •1. Нормируем значения факторов
- •Алгоритм метода главных компонентов:
- •42. Устранение гетероскедастичности остатков модели регрессии
- •43. Критерий Дарбина — Уотсона рассчитывается по следующей формуле.
12. Свойства оценок регрессионной модели, полученные по мнк.
Свойства МНК-оценок
В первую очередь, отметим, что для линейных моделей МНК-оценки являются линейными оценками, как это следует из вышеприведённой формулы. Для несмещенности МНК-оценок необходимо и достаточно выполнения важнейшего условия регрессионного анализа: условное по факторам математическое ожидание случайной ошибки должно быть равно нулю. Данное условие, в частности, выполнено, если, во-первых, математическое ожидание случайных ошибок равно нулю, во-вторых, факторы и случайные ошибки — независимые случайные величины.
Второе условие — условие экзогенности факторов — принципиальноеДля того, чтобы МНК были ещё и эффективными необходимо выполнение доп. свойств случайной ошибки:
Постоянная (одинаковая) дисперсия случайных ошибок во всех наблюдениях (отсутствие гетероскедастичности)
:
Отсутствие корреляции (автокорреляции) случайных ошибок в разных наблюдениях между собой
.
13. Формулы расчета оценок а0 и а1 в модели парной регрессии.
Вычислить
оценки
и
можно несколькими способами: решить
систему нормальных уравнений, по явным
формулам, матричным способом.
I способ. Система нормальных уравнений является системой двух линейных уравнений с двумя неизвестными и и имеет следующий вид:
Система может быть решена методом подстановки.
II способ. Явные формулы для вычисления оценок и следующие:
.
.
III способ. В матричном виде формулы для вычисления оценок и имеют вид:
.
где
,
,
.
Что характеризует коэффициент регрессии а1?
Физический смысл: Характерезует на сколько едениц изменится Y, при изменении а1.
Ур-е регрессии:у=а0+а1*х
Если брать на примере удобрений и урожайности участка, то можно сказать что, если мы изменим (увеличим) количество внесенных удобрений на 1 еденицу (кг на га), то урожайность участка соответсвенно увеличится на а1.
14. Введем обозначения:
-
вектор наблюдений зависимой переменой y,
-
матрица факторов.
-
вектор случайных ошибок.
Тогда модель линейной регрессии можно представить в матричной форме:
,
где
-параметры
модели
Y = A ∙ X, где A = {aj}, j = 0, 1, 2, ..., m - вектор оценок параметров регрессии;
Y
= {yi}, Х = матрица значений независимых переменных;
|
|
|||||
|
|
|||||
в матрицу X дополнительно введен столбец, все элементы которого равны 1,
Можно показать, что для общего случая множественной линейной регрессии, коэффициенты уравнения могут быть определены из следующего соотношения:
A = (Xт∙X)-1∙Xт∙Y. |
(6.6) |
15. В общем случае линейное уравнение связи двух переменных, учитывающее случайные отклонения, можно представить в виде:
y
= |
|
где – отклонение от теоретически предполагаемого значения;
и - неизвестные параметры (коэффициенты регрессии).
В уравнении можно выделить две части:
систематическую,
=
+
x,
где
характеризует
некоторое среднее значение y для
данного значения x;случайную ( ).
16.
|
|
Величина r2 называется коэффициентом детерминации. Он определяет долю вариации одной из переменных, которая объясняется вариацией другой переменной.
С помощью множественного коэффициента корреляции характеризуется совокупное влияние всех факторных переменных на результативную переменную в модели множественной регрессии.
Коэффициент множественной корреляции для линейной модели множественной регрессии с n факторными переменными рассчитывается через стандартизированные частные коэффициенты регрессии и парные коэффициенты корреляции по формуле:
где r (yxi) – парный (не частный) коэффициент корреляции между результативной переменной у и факторной переменной xi
Величина
отклонений фактических и расчетных
значений результативного признака
по
каждому наблюдению представляет
собой ошибку
аппроксимации.
Поскольку может быть как величиной положительной, так и отрицательной, то ошибки аппроксимации для каждого наблюдения принято определять в процентах по модулю.
Чтобы
иметь общее суждение о качестве модели
из относительных отклонений по каждому
наблюдению определяют среднюю ошибку
аппроксимации:
17. С помощью критерия Фишера оценивают качество регрессионной модели в целом и по параметрам.
Для этого выполняется сравнение полученного значения F и табличного F значения. F-критерия Фишера. F фактический определяется из отношения значений факторной и остаточной дисперсий, рассчитанных на одну степень свободы:
где n - число наблюдений; m - число параметров при факторе х.
F табличный - это максимальное значение критерия под влиянием случайных факторов при текущих степенях свободы и уровне значимости а.
Уровень значимости а - вероятность не принять гипотезу при условии, что она верна. Как правило а принимается равной 0,05 или 0,01.
Если Fтабл > Fфакт то признается статистическая незначимость модели, ненадежность уравнения регрессии.
t-критерий Стьюдента используется для оценки статистической значимости коэффициентов регрессии и коэффициента корреляции.
В качестве основной гипотезы выдвигают гипотезу H0 о незначимом отличии от нуля параметра регрессии или коэффициента корреляции. Альтернативной гипотезой, при этом является гипотеза обратная, т.е. о неравенстве нулю параметра или коэффициента корреляции.
Найденное по данным наблюдений значение t-критерия (его еще называют наблюдаемым или фактическим) сравнивается с табличным (критическим) значением, определяемым по таблицам распределения Стьюдента. Табличное значение определяется в зависимости от уровня значимости (a) и числа степеней свободы, которое в случае линейной парной регрессии равно (n-2) , n - число наблюдений.
Фактические значения t-критерия определяются по формулам:
где
Для проверки гипотезы о незначимом отличии от нуля коэффициента линейной парной корреляции используют критерий:
где r - оценка коэффициента корреляции, полученная по наблюдаемым данным. tтабл остается прежним.

.