- •1. Вид эконометрической модели, ее структура. Уравнение регрессионной модели. Переменные участвующие в любой эконометрической модели.
- •3.Корреляционное поле. (Диаграмма рассеяния).
- •4.Основные статистики, спользуемые в экономических моделях. Средняя величина, дисперсия (вариация), ковариация.
- •5. Коэффициент парной корреляции. Пределы ее изменения.
- •6. Оценка значимости линейного коэффициента корреляции с помощью t-критерия Стьюдента.
- •7 . Матрица коэффициентов парной корреляции, её структура, экономическая сущность.
- •8. Коэффициент множественной корреляции, приделы его измерения.
- •9. Проверка значимости коэффициента множественной корреляции и детерминации с помощью f-критерия Фишера
- •10. Частный коэффициент множественной корреляции, пределы его измерения
- •11. Предпосылки метода наименьших квадратов.
- •12. Свойства оценок регрессионной модели, полученные по мнк.
- •13. Формулы расчета оценок а0 и а1 в модели парной регрессии.
- •18. Проверка значимости уравнения регрессии с помощью f критерия Фишера .Расчетный и табличный критерий Фишера.
- •20. Оценка статистической значимости параметров модели с помощью критерия Стьюдента.
- •21. Стандартные ошибки коэффициентов Sa0 Sa1 и их расчет
- •22. Расчет доверительных интервалов для параметров парной регрессии
- •23. Определение прогнозного значения по эконометрической модели парной регрессии.Точный и интервальный прогноз.
- •24. Виды моделей множественной регрессии (м.Р.)
- •25. Что показывает коэффициент регрессии aj в модели множественной регрессии?
- •26. Соотношение между числом наблюдений и числом оцениваемых параметров при построении множественной регрессионной модели.
- •27. Матричная форма записи множественного регрессионного уравнения и оценка параметров модели.
- •28. Система нормальных уравнений для двухфакторной регрессионной модели.
- •30. Проверка качества построенной множественной регрессионной модели: коэффициент детерминации, множественный коэффициент корреляции, относительная ошибка аппроксимации.
- •31. Проверка значимости построенной множественной регрессионной модели.
- •32. Проверка статистической значимости параметров множественной регрессионной модели.
- •33. Построение доверительных интервалов для параметров мрм. Предельная ошибка параметра.
- •35. Коэффициент эластичности
- •36. Мультиколлинеарность: определение, признаки и последствия.
- •Наиболее полным алгоритмом исследования мультиколлинеарности есть алгоритм Фаррара-Глобера. С его помощью тестируют три вида мультиколлинеарности:
- •1. Всех факторов ( - хи-квадрат);
- •1. Нормируем значения факторов
- •Алгоритм метода главных компонентов:
- •42. Устранение гетероскедастичности остатков модели регрессии
- •43. Критерий Дарбина — Уотсона рассчитывается по следующей формуле.
10. Частный коэффициент множественной корреляции, пределы его измерения
Частные коэффициенты корреляции для модели множественной регрессии с тремя и более факторными переменными позволяют определить степень зависимости между результативной переменной и одной из факторных переменных при постоянстве остальных факторных переменных, включённых в модель.
Для модели множественной регрессии с тремя факторными переменными рассчитываются частные коэффициенты, как первого, так и второго порядка.
Общий вид модели трёхфакторной регрессии:
yi=
где yi – результативная переменная,
x1i – первая факторная переменная;
x2i – второй факторная переменная;
x3i – третья факторная переменная;
– неизвестные коэффициенты модели регрессии;
– случайная ошибка модели регрессии.
Частные коэффициенты корреляции первого порядка для модели трёхфакторной регрессии строятся точно так же, как и для модели двухфакторной регрессии.
Частные коэффициенты корреляции второго порядка для модели трёхфакторной регрессии строятся следующим образом.
Частный коэффициент корреляции между результативной переменной у и факторной переменной х1 при постоянстве факторных переменных х2 и х3:
Частный коэффициент корреляции между результативной переменной у и факторной переменной х2 при постоянстве факторных переменных х1 и х3:
Частный коэффициент корреляции между результативной переменной у и факторной переменной х3 при постоянстве факторных переменных х1 и х1:
Частные коэффициенты корреляции второго порядка построены с использованием частных коэффициентов корреляции первого порядка.
Следовательно, частный коэффициент корреляции порядка t может быть построен через частный коэффициент корреляции (t-1) порядка. Формулы, построенные через указанную взаимосвязь, называются рекуррентными.
При анализе модели множественной регрессии с n факторными переменными, частный коэффициент корреляции (n-1) порядка рассчитывается по общей формуле:
Частные коэффициенты корреляции, вычисленные по рекуррентным формулам, изменяются в пределах от минус единицы до плюс единицы.
11. Предпосылки метода наименьших квадратов.
Метод наименьших квадратов — один из методов регрессионного анализа для оценки неизвестных величин по результатам измерений, содержащих случайные ошибки.
При
оценке параметров уравнения регрессии
применяется МНК. При этом делаются
определенные предпосылки относительно
составляющей
,
которая представляет собой в уравнении
ненаблюдаемую
величину.
Исследования
остатков
предполагают
проверку наличия следующих пяти
предпосылок МНК:
1)
случайный характер остатков.
С этой целью строится график отклонения
остатков от теоретических значений
признака. Если на графике получена
горизонтальная полоса, то остатки
представляют собой случайные величины
и применение МНК оправдано.
2)
нулевая средняя величина остатков,
т.е.
,
не зависящая от хi.
3.
Гомоскедастичность
—
дисперсия каждого отклонения
одинакова
для всех значений хj.
4.
Отсутствие автокорреляции остатков.
Значения остатков
распределены
независимо друг от друга.
5.
Остатки подчиняются нормальному
распределению.
В
тех случаях, когда все пять предпосылок
выполняются, оценки, полученные по МНК
и методу максимального правдоподобия,
совпадают между собой.
