Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
идеальные ответы по химии.docx
Скачиваний:
12
Добавлен:
22.11.2019
Размер:
833.21 Кб
Скачать

3. Произведение растворимости Условия образования и ратсворения осадков. Ионный обмен и ионообменники.

Насыщенный раствор образуется в том случае, когда растворяемое вещ-во больше уже не может растворяться в нем.Если растворяемое вещ-во представляет собой ионное соединение, то ионы в насыщенном растворе находятся в динамическом равновесии с избыточным, нерастворившимся тв вещ-вом. Например, в насыщенном растворе хлорида серебра устанавливается следующее равновесие: AgCl(тв)=Ag+(водн)+Cl-(водн)

Константа этого равновесия определяется выражением: Kпр=([Ag+][Cl-])равн

K-произведение растворимости хлорида серебра.Растворимость хлорида серебра можно выразить через концентрацию с растворенного AgCl в воде.Эта концентрация совпадает с конц обоих ионов в растворe [Ag]=[Cl]=c

Кпр=с 2

В насыщенном растворе электролита произведение концентраций его ионов есть величина постоянная при данной температуре.Эта величина количественно характеризует способность электролита растворяться.

Условие образования и растворения осадков: произведение растворимостей могут использоваться для предсказания условий осаждения солей из раствора.Если произведение концентраций ионов в двух смешиваемых растворах превосходит произведение растворимости, то после смешивания раствора будет происходить осаждение осадка, до тех пор, пока произведение концентраций ионов не станет меньше произведения растворимости.

Ионный обмен-это процесс, в результате которого ионы, находящиеся в твердой фазе,обмениваются с ионами, находящимися в растворе.

Ионообменники: катионообменники, анионообменники.Когда твердый катионообменник приходит в соприкосновение с раствором, в котором содержатся какие-либо ионы, между ними устанавливается равновесие.

Ионный материал можно регенерировать(восстанавливать)

Анионообменник удаляет из раствора анионы.Для регенерации анионообменника может использоваться какое-либо основание.

Билет 13 (в шпорах нет)

1.Зависимость электродных потенциалов от концентрации. Уравнение Нернста. Расчет Энергии Гиббса окисл-восст процессов по эдс гальванического эл-та

Электродный потенциал — разность электрических потенциалов между электродом и находящимся с ним в контакте электролитом (чаще всего между металлом и раствором электролита).

Если концентрация ионов металла в растворе меньше равновесной, то при погружении металла в раствор равновесие смещается вправо, что приводит к отрицательному заряду на металле по отношению к раствору. Если малоактивный металл погружен в раствор соли с концентрацией больше равновесной, то происходит переход ионов из раствора на металл, заряженный положительно. В любом случае возникает двойной электрический слой, и появляется разность электрических потенциалов, или гальвани-потенциал.

Зависимость электродного потенциала от концентрации (активности) ионов и температуры и называется уравнением Нернста для отдельного электрода.

Уравнение Нернста — уравнение, связывающее окислительно-восстановительный потенциал (Окислительно-восстановительный потенциал (редокс-потенциал от англ. redox — reduction-oxidation reaction, Eh) — мера способности химического вещества присоединять электроны (восстанавливаться)). Окислительно-восстановительный потенциал выражают в милливольтах (мВ) системы с активностями веществ, входящих в электрохимическое уравнение, и стандартными электродными потенциалами окислительно-восстановительных пар.

E — электродный потенциал, E0 — стандартный электродный потенциал, измеряется в вольтах;

R— универсальная газовая постоянная, равная 8.31 Дж/(моль·K);

T — абсолютная температура;

F— число Фарадея, равное 96485,35 Кл/моль;

m— число моль электронов, участвующих в процессе;

и — активности соответственно окисленной и восстановленной форм вещества, участвующего в полуреакции.

В гальванической ячейке, где самопроизвольная окислительно-восстановительная реакция заставляет ячейку производить электрический потенциал, Энергия Гиббса ΔGo должна быть отрицательной, в соответствии со следующим уравнением:

ΔGoяч = -nFEoяч

где n это количество молей электронов на моль продуктов, а F является постоянной Фарадея, ~96485 Кл/моль. Таким образом применимы следующие правила:

если Eoяч> 0, тогда процесс самопроизвольный (гальваническая ячейка)

если Eoяч< 0, тогда процесс несамопроизвольный (электролитическая ячейка)

2.Кинетическое уравнение ре акций. Зависимость скорости реакций от температуры. Уравнение Аррениуса. Энергия активации. Реакционный механизм. Понятие о переходном комплексе и промежуточной частице.

Скоростью химической реакции называется ИЗМЕНЕНИЕ КОНЦЕНТРАЦИИ реагента или продукта в единицу времени.

Разницу между тем, что было и тем, что стало, часто обозначают буквой греческого алфавита Δ (дельта) Следовательно, только что приведенное определение математически можно выразить так:

Чем больше концентрация молекул (А) или (Б) в смеси, тем больше вероятность столкновения между ними. v = [А моль/л][Б моль/л]

В дальнейшем обозначения "моль/л" в квадратных скобках мы уже писать не будем. Заметим, что в полученном нами выражении для скорости химической реакции размерности левой и правой части не совпадают. Действительно, размерность скорости реакции, как мы уже знаем, "моль/л.сек", а размерность произведения в правой части уравнения другая: "моль2/л2". Для того чтобы выровнять размерности в правой и левой частях уравнения, нужен коэффициент пропорциональности. Обозначим его буквой k и присвоим ему размерность "л/моль.сек". Тогда уравнение примет такой вид:

v = k[А][Б]

Коэффициент пропорциональности k способен выполнять гораздо более полезную функцию, чем простое выравнивание размерностей в левой и правой частях уравнения (2). Коэффициент k НЕ ЗАВИСИТ от концентраций [А] и [Б]. Эти концентрации (как и скорость) могут изменяться в ходе реакции, но значение k сохраняется ПОСТОЯННЫМ для данной реакции в выбранных условиях. Поэтому коэффициент k называют КОНСТАНТОЙ СКОРОСТИ РЕАКЦИИ. Уравнение (2) называется КИНЕТИЧЕСКИМ УРАВНЕНИЕМ для реакций типа А + Б = В (или А + Б = В + Г + ...).Бывают случаи, когда реакция происходит в результате одновременного столкновения трех частиц. Например, для реакции 2А + Б = В (или 2А + Б = В + Г +…) кинетическое уравнение должно выглядеть так:

v = k[А][А][Б] или v = k[А]2[Б]

В общем случае, для реакции

aA +bB + cC = dD + eE + fF + …

кинетическое уравнение для скорости реакции записывается следующим образом:

v = k[A]a[B]b[C]c

Оно представляет собой произведение концентраций реагентов, каждая из которых взята в степени, равной числу молей соответствующего вещества в полном уравнении реакции. Это не что иное, как математическая запись ЗАКОНА ДЕЙСТВИЯ МАСС.

Часто встречается и термин ЗАКОН ДЕЙСТВУЮЩИХ МАСС, причем можно использовать любое из этих названий. Закон действующих масс и его математическое выражение - кинетическое уравнение - называют основным законом химической кинетики. Этот закон можно сформулировать так:

При постоянной температуре скорость химической реакции прямо пропорциональна произведению молярных концентраций реагентов.

О кинетическом уравнении v = k[A]a[B]b[C]c говорят, что оно имеет порядок по каждому из входящих в него веществ. Порядок реакции по данному веществу - это показатель степени при концентрации данного вещества в кинетическом уравнении. Например, уравнение v = k[NO]2[O2] имеет второй порядок по NO и первый порядок по О2. Сумма порядков по всем веществам (a + b + c) называется общим или суммарным порядком реакции.

Правило Вант-Гоффа: при повышении t на каждые 10 градусов скорость химической реакции возрастает в 2-4 раза.Vt2=Vt1*γ^t1-t2/10 где γ – температурный коэффициент реакции.

Следует помнить, что правило Вант-Гоффа применимо только для реакций с энергией активации 60-120 кДж/моль в температурном диапазоне 10-400oC. Правилу Вант-Гоффа также не подчиняются реакции, в которых принимают участие громоздкие молекулы, например белки в биологических системах. Температурную зависимость скорости реакции более корректно описывает уравнение Аррениуса.

С ростом температуры число активных молекул быстро увеличивается, что приводит к резкому возрастанию скорости реакции. ((Уравнение Аррениуса: k=ZPe-Eа/RT, Z-число столкновений молекул в секунду в единице объема; e=2, 718..; R-универсальная газовая постоянная = 8,314 Дж/моль*К; Т- температура, К; Р- так называемый стерический множитель. ))

По Аррениусу константа скорости k и энергия активации Ea связаны соотношением, получившим название уравнения Аррениуса: k=Ze-Ea\RT Здесь Z – число столкновений, R – универсальная газовая постоянная, T – абсолютная температура. Таким образом, при постоянной температуре скорость реакции определяет Ea. Чем больше Ea, тем меньше число активных молекул и тем медленнее протекает реакция. При уменьшении Ea скорость возрастает, а при Ea = 0 реакция протекает мгновенно. Затрачиваемая на перевод начальных продуктов в активное состояние энергия затем полностью или частично вновь выделяется при переходе к конечным продуктам. Разность энергий начальных и конечных продуктов определяет ΔH реакции, которая от энергии активации не зависит. Таким образом, по пути из исходного состояния в конечное система должна преодолеть энергетический барьер. Только активные молекулы, обладающие в момент столкновения необходимым избытком энергии, равным Ea, могут преодолеть этот барьер и вступить в химическое взаимодействие. С ростом температуры увеличивается доля активных молекул в реакционнной среде.

Изменить величину Ea можно с помощью катализаторов. Вещества, принимающие участие, но не расходующиеся в процессе реакции, назваются катализаторами. Само это явление называется катализом. В зависимости от того, находится ли катализатор в той же фазе, что и реагирующие вещества, или образует самостоятельную фазу, говорят о гомогенном или гетерогенном катализе. Механизм каталитического действия для них не одинаков, однако, и в том и в другом случае происходит ускорение реакции за счет снижения Ea, т. е. образуются частицы промежуточного соединения AK (катализатора с реагентами), затем активный комплекс AKB и конечные продукты с регенерацией катализатора. Следовательно, каталитический путь оказывается кинетически более выгодным, чем прямое взаимодействие исходных веществ. Существует ряд специфических катализаторов – ингибиторов, снижающих скорость реакции.

Интермедиат (лат. intermedius — средний) — промежуточное вещество с коротким временем жизни, образующееся в ходе химической реакции и затем реагирующие далее до продуктов реакции. Обычно интермедиатами являются атомы или молекулы с незаполненными электронными оболочками, например радикалы, карбокатионы, карбанионы. В виду того, что интермедиаты очень быстро реагируют, их концентрация в реакционной смеси очень мала.

ПЕРЕХОДНОЕ СОСТОЯНИЕ (активированный комплекс), конфигурация системы атомных ядер и электронов, участвующих в элементарном акте химической реакции, в момент преодоления системой энергетического барьера, разделяющего ее начальное и конечное состояния. Теорию переходного состояния применяют для расчета скоростей химических реакций.