Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
идеальные ответы по химии.docx
Скачиваний:
11
Добавлен:
22.11.2019
Размер:
833.21 Кб
Скачать

2.Энтропия. 2 закон термодинамики. 3 закон термодинамики.

Энтропия (S) – термодинамическая функция состояния, которая служит мерой беспорядка (неупорядоченности) системы. Больцман определил энтропию как термодинамическую вероятность состояния (беспорядок) системы W. Размерность энтропии 1 моля вещества совпадает с размерностью газовой постоянной R и равна Дж∙моль–1∙K–1. Изменение энтропии в необратимых и обратимых процессах передается соотношениями ΔS > Q / T и ΔS = Q / T. Например, изменение энтропии плавления равно теплоте (энтальпии) плавления ΔSпл = ΔHпл/Tпл Для химической реакции изменение энтропии аналогично изменению энтальпии. Энтропия вещества или системы тел при определенной температуре является абсолютной величиной. Энтропия зависит от:

  1. Агрегатного состояния вещества. Энтропия увеличивается при переходе от твердого к жидкому и особенно к газообразному состоянию (вода, лед, пар).

  2. Изотопного состава (H2O и D2O).

  3. Молекулярной массы однотипных соединений (CH4, C2H6, н-C4H10).

  4. Строения молекулы (н-C4H10, изо-C4H10).

  5. Кристаллической структуры (аллотропии) – алмаз, графит.

стремление системы к беспорядку проявляется тем больше, чем выше температура. Произведение изменения энтропии системы на температуру TΔS количественно оценивает эту тенденцию и называется энтропийным фактором. S возрастает при переходе в-ва из кристаллического состояния в жидкое и из жидкого в газообразное, при растворении кристаллов, при расширении газов, при хим.взаимодействиях, приводящих к увеличению числа частиц, и прежде всего частиц в газообразном состоянии. Напротив, все процессы в результате которых упорядоченность системы возрастает(конденсация, полимеризация, сжатие, уменьшения числа частиц), сопровождаются уменьшением энтропии.

Второй закон термодинамики- в изолированных системах самопроизвольно идут только такие процессы, которые сопровождаются возрастанием энтропии. Второй закон т/д имеет статистический хар-р, т.е. справедлив лишь для систем, состоящих из очень большого числа частиц.

Третий закон термодинамики - энтропия идеального ионного кристалла при температуре абсолютного нуля равна нулю.

3. 3. Электролиз. Электролиз водных растворов и расплавов. Законы Фарадея. Практическое применение элеткролиза.

Электролиз - окислительно-восстановительный процесс протекающий на электродах при прохождении эл тока через расплав или раствор электролита.

Сущность электролиза состоит в том, что за счет электрической энергии осуществляется реакция, которая не может протекать самопроизвольно.

Электролиз водных растворов электролитов- при рассмотрении электролиза водных растворов необходимо

помнить, что кроме ионов электролита во всяком водном растворе есть еще ионы Н+ и ОН- - продукты диссоциации воды. В электрическом поле ионы Н+ перемещаются к катоду, а ионы ОН- к аноду. Таким образом, у катода могут

разряжаться как катионы электролита, так и катионы водорода. У анода может происходить разряд как анионов электролита, так и гидроксид –ионов. Кроме того, молекулы воды также могут подвергаться электрохимическому окислению или восстановлению. Из нескольких возможных процессов будет протекать тот, осуществление которого

сопряжено с минимальными затратами энергии.

Электролиз расплавов - при электролизе расплавов в процессе учавствуют только ионы вещества, которое подвергается электролизу. Например, если подвергнуть электролизу расплав поваренной соли (NaCl), то на аноде будет выделяться тот же газ - хлор, а вот на катоде вместо водорода будет восстанавливаться чистый металл - натрий (Na). Именно таком способом в промышленности получают металлический натрий и другие щелочные и щелочноземельные металлы. Таким же образом получают другие щелочные металлы (калий (K), литий (Li), кальций (Ca)), проводя ток через расплавы их солей.

Зако́ны электро́лиза Фараде́я являются количественными соотношениями, основанными на электрохимических исследованиях, опубликованных Майклом Фарадеем в 1834 году.[1]

Первый закон электролиза Фарадея: масса вещества, осаждённого на электроде при электролизе, прямо пропорциональна количеству электричества, переданного на этот электрод. Под количеством электричества имеется в виду электрический заряд, измеряемый, как правило, в кулонах.

Второй закон электролиза Фарадея: для данного количества электричества (электрического заряда) масса химического элемента, осаждённого на электроде, прямо пропорционально эквивалентной массе элемента. Эквивалентной массой вещества является его молярная масса, делённая на целое число, зависящее от химической реакции, в которой участвует вещество.

Законы Фарадея можно записать в виде следующей формулы:

Практическое применение электролиза Электролиз широко используется в различных отраслях промышленности. Остановимся на некоторых наиболее распространенных. Электролиз в металлургии. Электролизом растворов солей получают медь, цинк, кадмий, кобальт, марганец и другие металлы. Электролиз в химической промышленности. К наиболее крупному электролитическому процессу в промышленности относится электролиз раствора хлорида натрия с получением газообразных хлора на аноде, водорода на катоде и раствора щелочи в катодном пространстве. Получение гальванопокрытий. Гальваническими называются металлические покрытия, наносимые на поверхность какого-либо изделия методом электролиза. Электрохимическая обработка металлов и сплавов. Для изменения размеров и формы, а также состояния поверхности металлических изделий используют электрохимические методы обработки, при которых производится электроокисление металлических изделий: электрохимическая размерная обработка, анодирование и др.

Билет 11.

1. Понятие о квантовой механике. Квантовый характер излучения и поглощения энергии. Уравнение Планка. Атомные спектры как характеристики энергетических уровней электронов. Корпускулярно-волновая природа электрона. Уравнение де Бройля.

Квантовая механика – раздел теоретической физики, описывающий квантовые системы и законы их движения. Поглощение или испускание энергии может осуществляться только строго определенными дискретными порциями – квантами. Любое излучение состоит из дискретных частиц квантов излучения – фотонов – постулат Эйнштейна.

Гипотеза Л. Де Бройля – каждой частице с определенным импульсом соответствует волновой процесс с длиной волны λ = h/mυ, где h – постоянная Планка.

Основные идеи квантовой механики:

1) Атомы или молекулы испускают или поглощают электромагнитное излучение при изменении своего энергетического состояния.

Е = hν = hc/λ

2) Атомы или молекулы могут существовать только в определенных энергетических состояниях. Когда атом или молекула изменяет свое энергетическое состояние, они должны испустить или поглотить такое количество энергии, чтобы можно было перейти в новое энергетическое состояние («условие квантования»).

3) Энергетическое состояние атома или молекулы может быть описано при помощи определенного набора параметров, называемых квантовыми числами.

Распределение электронов в многоэлектронных атомах основано на трех положениях: принципе минимума энергии, принципе Паули, правиле Хунда.

Атомный спектр- в физике, совокупность всех значений какой-либо физической величины, характеризующей систему или процесс. Чаще всего пользуются понятиями частотного спектра колебаний (в частности, электромагнитных и акустических), спектра энергий, импульсов и масс частиц (см. Спектроскопия, Масс-спектрометрия). Спектр может быть непрерывным и дискретным. Также различают спектр поглощения и спектр испускания.

Согласно волновой теории, ē является и частицей и волной, т.е. имеет двойственную природу: *корпускулярные свойства ē выражаются в его способности проявлять свое действие только как целого;*волновые свойства проявляются в его движении, а также в явлениях дифракции и интерференции.

ē как бы размазан вокруг ядра по сфере, удаленной от ядра на некоторое расстояние, таким образом, вместо стационарных орбит по Бору, ядро атома окружено пульсирующим электронным облаком. Область пространства вокруг ядра, занимаемая электронаи получила название - атомная орбиталь, выражающая форму электронного облака.

2. Энергия Гиббса — это величина, показывающая изменение энергии в ходе химической реакции и дающая таким образом ответ на принципиальную возможность протекания химической реакции.

Направлени химической реакции. ΔG > 0 процесс термодинамически запрещен; ΔG < 0 реакция термодинамически разрешена, самопроизвольный процесс; ΔG = 0 равновесие.

ΔH < 0, ΔS > 0 - реакция самопроизвольная при всех температурах

ΔH < 0, ΔS < 0 - реакция самопроизвольная при низких температурах

ΔH > 0, ΔS > 0 - реакция самопроизвольная при высоких температурах

ΔH > 0, ΔS < 0 - реакция не самопроизвольная при всех температурах

Примеры придумать самим!