Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
апав.docx
Скачиваний:
18
Добавлен:
26.09.2019
Размер:
1.53 Mб
Скачать

Правило Верещагина

Недостатком метода Мора является необходимость получать значения внутренних силовых факторов, входящих в подинтегральные выражения формул (2.18) и (2.19), в общем виде, как функций от z, что становится достаточно трудоемким уже при двух – трех участках разбиения в балках и особенно – в рамах. Оказывается, что от этого недостатка можно уйти, если непосредственное интегрирование в формулах Мора заменить так называемым перемножением эпюр. Такая замена возможна в тех случаях, когда хотя бы одна из перемножаемых эпюр является прямолинейной. Этому условию соответствуют все системы, состоящие из прямолинейных стержней. Действительно, в таких системах эпюра, построенная от обобщенной единичной силы, всегда будет прямолинейной.

 

Способ вычисления интеграла Мора путем замены непосредственного интегрирования перемножением соответствующих эпюр называется способом (или правилом) Верещагина и заключается в следующем: чтобы перемножить две эпюры, из которых хотя бы одна является прямолинейной, нужно площадь одной эпюры (если есть криволинейная эпюра, то обязательно ее площадь) умножить на ординату другой эпюры, расположенную под центром тяжести первой. Докажем справедливость этого правила. Рассмотрим две эпюры (рис.28). Пусть одна из них (Mn) является грузовой и имеет криволинейное очертание, а вторая  соответствует единичной нагрузке и является линейной. Из рис.28 следует, что  Подставим значения  в выражение где - дифференциал площади  эпюры  Mn.

Рис. 28

Интеграл представляет собой статический момент площади относительно оси О – О1, при этом: где zc – абсцисса центра тяжести площади , тогда: Учитывая, что  получим:                                            (2.20)  Выражение (2.20) определяет результат перемножения двух эпюр, а не перемещения. Чтобы получить перемещение, этот результат нужно разделить на жесткость, соответствующую внутренним силовым факторам, стоящим под знаком интеграла.

6

еоремы о взаимности работ и перемещений

Запишем выражения начала возможных перемещений для балки, показанной на рис. 2.2.9, приняв для состояния в качестве возможных перемещения, вызванные состоянием , а для состояния - перемещения, вызванные состоянием .

(2.2.21)

(2.2.22)

Так как выражения работ внутренних сил одинаковы, то очевидно, что

(2.2.23)

Полученное выражение носит название теоремы о взаимности работ (теоремы Бетти). Она формулируется следующим образом: возможная работа внешних (или внутренних) сил состояния на перемещениях состояния равна возможной работе внешних (или внутренних) сил состояния на перемещениях состояния .

Применим теорему о взаимности работ к частному случаю нагружения, когда в обоих состояниях системы приложено по одной единичной обобщенной силе и .

7

Статически неопределимой называют такую систему, ко­торая не может быть рассчитана по методу сечений с использова­нием лишь одних условий равновесия, так как она обладает лиш­ними связями. В качестве лишних следует принимать те связи, которые необходимо отбросить из состава заданной, чтобы превра­тить ее в статически определимую и геометрически неизменяемую систему.

Главной особенностью статически неопределимых систем является наличие лишних связей в их структуре. Лишние связи сооружений можно удалять, не нарушая их геометрической неизменяемости. Например, удалением опорных вертикальных связей В и С неразрезная балка преобразуется в консольный стержень, введением цилиндрических шарниров K и L – в статически определимую двухпролётную составную балку (рис. 6.1,а). Удалив из статически неопределимой фермы стержень 14 или 34, получим два варианта статически определимой шарнирно-стержневой системы с простой структурой (рис. 6.1,б). Статически неопределимая двухшарнирная рама после удаления горизонтальной связи опоры В превращается в ломаный стержень, прикреплённый к диску "земля" шарниром А и вертикальной связью, ось которой не проходит через шарнир А. Введением цилиндрического шарнира С эта же рама преобразуется в статически определимую трёхшарнирную раму (рис. 6.1,в).

Степень статической неопределимости системы С легко установить путем вычита­ния из общего числа опорных стержней m число стержней, необходимых для сохране­ния геометрически неизменяемого при­крепления системы (одно - для одномерных; три - для плоских и шесть - для пространственных систем).

8

Метод сил

Наиболее широко применяемым в машиностроении общим методом раскрытия статической неопределимости стержневых и рамных систем является метод сил. Он заключается в том, что заданная статически неопределимая система освобождается от дополнительных связей как внешних, так и взаимных, а их действие заменяется силами и моментами. Величина их в дальнейшем подбирается так, чтобы перемещения в системе соответствовали тем ограничениям, которые накладываются на систему отброшенными связями. Таким образом, при указанном способе решения неизвестными оказываются силы. Отсюда и название «метод сил».

 

Алгоритм расчета методом сил

Независимо от особенностей рассматриваемой конструкции, можно выделить следующую последовательность расчета статически неопределимых систем методом сил:

1. Определить степень статической неопределимости.

2. Выбрать основную систему.

3. Сформировать эквивалентную систему.

4. Записать систему канонических уравнений.

5. Построить единичные и грузовые эпюры внутренних силовых факторов, возникающих в элементах рассматриваемой конструкции.

6. Вычислить коэффициенты при неизвестных и свободные члены системы канонических уравнений.

7. Построить суммарную единичную эпюру.

8. Выполнить универсальную проверку коэффициентов при неизвестных и свободных членов.

9. Решить систему канонических уравнений, т.е. определить реакции лишних связей.

10. Построить эпюры возникающих внутренних силовых факторов для заданной системы (иначе говоря, окончательные эпюры).

11. Выполнить статическую и кинематическую проверки.

Отметим, что пункты 7, 8, 11 приведенного алгоритма не являются безусловно необходимыми, хотя и позволяют контролировать правильность выполнения расчета. А для систем с одной лишней связью пункты 7 и 8 просто лишены смысла, так как в этом случае суммарная единичная эпюра совпадает с единичной.

Остановимся подробнее на некоторых из вышеперечисленных этапов расчета.

9

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]