Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Предмет и система правовой статистики.doc
Скачиваний:
18
Добавлен:
25.09.2019
Размер:
1.25 Mб
Скачать
  1. Интервальное оценивание параметров распределения. Интервальное оценивание среднего квадратичного отклонения нормального распределения.

   Точечное и интервальное оценивание среднего квадратического отклонения. Точечной оценкой является выборочное среднее квадратическое отклонение, т.е. неотрицательный квадратный корень из выборочной дисперсии. Дисперсия рассматриваемой случайной величины - выборочного среднего квадратического отклонения s0 – оценивается как дробь

d2 / (4   ).

Нижняя доверительная граница для среднего квадратического отклонения  исходной случайной величины имеет вид

- U(p)d / (2 s0) ,

где:

            – выборочная дисперсия,

          U(p) – квантиль нормального распределения порядка (1+р)/2 (как и раньше),

          d – положительный квадратный корень из величины d2, введенной выше при оценивании дисперсии.

          Верхняя доверительная граница для среднего квадратического отклонения исходной случайной величины имеет вид

 + U(p)d / (2  ) ,

где все составляющие имеют тот же смысл, что и выше.

          Пример 7. Для данных о наработке резцов до отказа точечной оценкой для среднего квадратического отклонения является  . При доверительной вероятности р = 0,95 нижняя доверительная граница такова:

25,75 – 1,96×161,03 / (2×25,75) = 25,75 – 6,13 = 19,62.

Соответственно верхняя доверительная граница симметрична нижней относительно точечной оценки и равна = 25,75 + 6,13 = 31,88.

          Правила интервального оценивания для среднего квадратического отклонения получены из аналогичных правил для оценивания дисперсии с помощью метода линеаризации (см. главу 1.4 или, например, [4, п.2.4]). Как и раньше, доверительный интервал является симметричным, непараметрическим и асимптотическим.

          Поскольку среднее квадратическое отклонение – это квадратный корень их дисперсии, то доверительные границы можно получить, извлекая квадратные корни из одноименных границ для дисперсии.

          Пример 8. Для данных о наработке резцов до отказа при доверительной вероятности р = 0,95 согласно примеру 4 доверительный интервал для дисперсии – это [347,37; 978,63]. Извлекая квадратные корни, получаем доверительный интервал [18,64; 31,28] для среднего квадратического отклонения, соответствующий тому же значению доверительной вероятности. Он не является симметричным относительно точечной оценки. Его длина 12,64 несколько больше длины симметричного доверительного интервала 12,26 в примере 7.   

          Классический подход, основанный на гипотезе нормальности распределения результатов наблюдения, связан с использованием распределения хи-квадрат и сводится к извлечению квадратных корней из доверительных границ для дисперсии.

          Пример 9. Применяя формально классический подход к данным о наработке резцов до отказа, исходим из доверительного интервала для дисперсии [462,63; 1029,54], соответствующего доверительной вероятности р = 0,95. Извлекая квадратные корни, находим доверительный интервал для среднего квадратического отклонения [21,51; 32,09]. Как и следовало ожидать, длина этого несимметричного интервала 10,58 меньше длины непараметрического доверительного интервала.