Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
otveti_ekzamen_fizika_3_kurs_optika.docx
Скачиваний:
17
Добавлен:
24.09.2019
Размер:
1.99 Mб
Скачать

Метод Юнга

Как уже отмечалось, когерентных источников света в природе не существует. Однако когерентные световые волны можно получить, если свет, идущий от одного источника, разделить на две (или более) части и затем заставить их встретиться. В силу общности своего происхождения полученные лучи должны быть когерентными и при наложении интерферировать. Такое разделение может быть осуществлено с помощью экранов и щелей (метод Юнга), зеркал (зеркала Френеля) и преломляющих тел (бипризма Френеля).

Т.Юнг с помощью двух щелей получил на экране интерференционную картину. Его опыт заключался в следующем: источником света служила ярко освещенная щель S, от которой световая волна падала на две узкие равноудаленные щели S1 и S2, параллельные S(рис. 2.2) Щели S1 и S2 можно считать когерентными источниками света, а все три упомянутые щели можно рассматривать как точечные ис­точники, свет от которых распространяется во всех направлениях. Волны, идущие от S1 и S2, накладываясь друг на друга, интерферируют. Интерференционная картина наблюдается на экране Э (рис. 2.2)

Обозначим расстояние между щелями S1 и S2 равным d, а между щелями и экраном - l, причем l » d (рис. 2.3 а). Точка О – центр экрана, она расположена симметрично относительно щелей S1 и S2. Результат интерференции волн в произвольной точке экрана М, находящейся на расстоянии х от его центра О, должен определяться разностью хода Δ = l2- l1. Математический расчет дает для разности хода Δ = хd/l. В тех местах экрана, которые удовлетворяют условию

Образуется интерференционный максимум. Отсюда

В тех местах экрана, где

волны “гасят” друг друга и образуется интерференционный минимум. Отсюда

Шириной интерференционной полосы Δх называется расстояние между соседними максимумами или минимумами

Величина Δх постоянна при заданных d, l и λ и не зависит от порядка интерференции m. Таким образом, при освещении щелей монохроматическим светом на экране наблюдается чередование светлых и темных полос одинаковой ширины (рис. 2.3 б). Чтобы полосы были хорошо различимы, Δх должна быть порядка 5 мм, тогда при λ = 500 нм отношение l/d равно 10000, т.е. выполняется условие l » d.

При освещении щелей белым светом интерференционные максимумы становятся радужными. Это происходит из-за того, что положение интерференционного максимума зависит от длины волны падающего света, а белый свет содержит в себе все цвета спектра. Максимумы коротких длин волн (фиолетовых) будут располагаться ближе к центру экрана, за ними следуют максимумы синих длин волн и т.д. до самых длинных красных (рис. 2.3 в). В середине экрана при m = 0 максимумы всех волн совпадут из-за отсутствия разности хода и получится белая полоса.

В настоящее время высокая степень когерентности световых лучей достигается с помощью лазеров.

3.Интерференция в тонких пленках(или полосы одного наклона)

В природе мы неоднократно наблюдали радужную окраску мыльных пузырей, тонких пленок нефти и масла на поверхности воды и оксидных пленок на поверхности металлов. Эти явления обусловлены интерференцией света в тонких пленках, возникающей при наложении когерентных световых волн, отраженных от верхней и нижней поверхностей пленки.

Пусть на плоскопараллельную прозрачную пластину с показателем преломления n и толщиной d под углом i падает плоская монохроматическая волна (рис. 2.4). Рассмотрим луч 1, который, коснувшись поверхности в точке О, разделится на два когерентных луча: отраженный от верхней поверхности пленки 1’ и преломленный 1’’. Луч 1’’ пройдет пленку, частично отра­зится от нижней ее поверхности в точке С, дойдет до точки В и, преломившись, выйдет из пленки. Проведем прямую АВ, перпендикулярную лучам 1’ и 1’’. Путь, который оба луча пройдут от этой прямой до экрана, будет одинаковым, но от точки О до АВ путь, пройденный лучами, будет различным. Найдем эту разность хода лучей Δ. С учетом показателя преломления пластинки n: Δ = =(OC+CB)·n–OA, или, как дает математический расчет,

Известно, что в процессе отражения от оптически более плотной среды, световой луч теряет половину длины волны λ/2. Если пластинка находится в воздухе, то λ/2 теряет луч 1’ в точке О и выражение для разности хода при­обретает вид:

Если на пути лучей поставить собирающую линзу, а в ее фокальной плоскости – экран, то лучи 1’ и 1’’соберутся в точке М. Освещенность точки экрана будет максимальной, если разность хода Δ составит целое число длин волн и минимальной, если Δ составит нечетное число полуволн.

Разберем несколько различных вариантов интерференции света в тонких пленках.

Полосы равного наклона.

Пусть на плоскопараллельную пластинку толщиной d = const падает расходящийся пучок монохроматических лучей (т.е. пучок, в котором представлены всевозможные углы падения i ≠ const) (рис. 2.5). Выделим из всего множества лучей луч 1 с углом падения i1, который в результате отражения и преломления образует лучи 1’и 1’’, и луч 2 с углом падения i2, который в результате отражения и преломления образует лучи 2’ и 2’’. Так как пластинка плоскопараллельная, лучи 1’ и 1’’, 2’ и 2’’ будут попарно параллельны и в бесконечности образуют интерференционную картину. Если параллельно пластинке расположить линзу Л, а в ее фокальной плоскости поместить экран Э, то интерференционную картину мы будем наблюдать на экране. Лучи 1’ и 1’’ встретятся на экране в точке М1, а лучи 2’ и 2’’ – в точке М2. Положение этих точек можно найти, если построить побочные оптические оси, проходящие через центр линзы O и параллельные каждой паре лучей. На рис. 2.5 это пунктирные линии ОМ1 и ОМ2, соответственно. Необходимо заметить, что в точке М1 встретятся и проинтерферируют все одинаково ориентированные лучи, падающие под углом i1. Однако, если рассмотреть луч 3 с тем же углом падения i1, но иначе ориентированный по отношению к пластинке (см. рис. 2.5), то интерференция подобных ему лучей будет наблюдаться в другой точке экрана М3, находящейся на таком же расстоянии от центра экрана, что и точка М1. Таким образом, лучи с углом падения i1, но с разными ориентациями, образуют на экране кольцо, освещенность будет зависеть от разности хода лучей. Лучи с углом падения i2 и всевозможных ориентаций образуют на экране кольцо с тем же центром, но другого радиуса. В итоге на экране получится интерференционная картина, состоящая из концентрических светлых и темных колец, каждое из которых соответствует строго определенному углу наклона (углу падения) лучей. Поэтому данная интерференционная картина получила название полос равного наклона. Если линза и экран не параллельны пластине, то полосы равного наклона будут иметь вид эллипсов.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]