- •Вопрос 1 «Предмет и задача химии. Значение химии»
- •Вопрос 2. Строение атома. Модели атома (Морозова, Резерфорда, Бора). Теория Бора. Уравнение Планка. Принцип неопределенности Гейзенберга. Волновая функция.
- •Строение атома по Бору:
- •Вопрос 3. Квантово-механическое представление о строении атома. Квантовые числа и их физический смысл.
- •Вопрос 4. Распределение электронов в многоэлектронном атоме. Принцип Паули. Правило Гунда. Порядок заполнения электронных подуровней.
- •Вопрос 6. Ковалентная связь. Свойства ковалентной связи: прочность, полярность, насыщаемость, направленность, гибридизация, кратность.
- •Вопрос 7. Обменный и донорно-акцепторный механизм образования ковалентной связи.
- •Вопрос 8. Σ-, π-, δ- связь.
- •Вопрос 9. Ионная связь и ее свойства.
- •Вопрос 10. Водородная связь и межмолекулярное взаимодействие.
- •Вопрос 11. Комплексные соединения: строение, характер связи, диссоциация.
- •Вопрос 12. Химичёская термодинамика, термодинамические параметры (т, р, V). Внутренняя энергия. Первый закон термодинамики.
- •Вопрос 13
- •Вопрос 13 Энтальпия образования вещества. Закон Гесса и его применение.
- •Вопрос 14. Свободная энергия Гиббса. Самопроизвольность протекания реакций. Свободная энергия Гиббса
- •Вопрос 16. Химическая кинетика. Закон действующих масс гомогенных и гетерогенных систем. Скорость прямой и обратной реакции. Константа скорости химической реакции. Порядок и молекулярность реакции.
- •Вопрос17. Влияние температуры на скорость реакции, правило Вант-Гоффа, энергия активации, уравнение Аррениуса
- •Вопрос 18. Гомогенный и гетерогенный катализ. Катализаторы и ингибиторы.
- •Вопрос 19
- •Вопрос 19. Химическое равновесие. Смещение химического равновесия при изменении условий протекания химических процессов. Принцип Ле-Шателье
- •Вопрос 20. Растворы Свойства растворов.
- •Вопрос 21. Способы выражения концентрации растворов(процентная, молярность, нормальность, моляльность, титр).
- •Вопрос 22. Закон Рауля. Осмос. Физический смысл эбуллиоскопической и криоскопической постоянной.
- •Вопрос 23. Растворы электролитов. Электролитическая диссоциация. Степень диссоциации. Константа диссоциации.
- •Вопрос 24 Ионное произведение воды. Водородный показатель (рН) растворов.
- •Вопрос 25. Гидролиз солей. Константа гидролиза.
- •Вопрос 26. Произведение растворимости.
- •Вопрос 27. Дисперсные системы. Коллоидные растворы, свойства.
- •Вопрос 28.Строение мицеллы коллоидов. Оптические и электрические свойства.
- •Вопрос 29. Окислительно-восстановительные реакции (овр). Ионно-электронный метод уравнивания овр. Термодинамическая вероятность протекания овр.
- •Вопрос 30. Электродный потенциал. Стандартный электродный потенциал. Водородный потенциал. Уравнение Нернста.
- •Вопрос 31. Гальванический элемент: устройства, протекающие процессы на аноде и катоде.
- •Вопрос 32. Эдс и энергия Гиббса гальванического элемента.
- •Вопрос 33. Электролиз. Законы Фарадея. Электрохимический эквивалент. Выход по току.
- •Вопрос 34. Поляризация, ее причины. Перенапряжение.
- •Вопрос 35. Электролиз расплавов и растворов на растворимых и нерастворимых электродах. Последовательность разряда ионов при электролизе на аноде и катоде.
Вопрос 18. Гомогенный и гетерогенный катализ. Катализаторы и ингибиторы.
Общие понятия. Одним из наиболее распространенных методов ускорения химических реакций является катализ. Этот метод осуществляется с помощью катализаторов — веществ, резко увеличивающих скорость реакции, но не расходующихся в результате ее протекания. Катализаторы могут участвовать в образовании промежуточных продуктов реакции, но к концу взаимодействия они полностью регенерируются.
Если катализатор и взаимодействующие вещества образуют однофазную систему, катализ называют гомогенным. Если же катализатор находится в системе в виде самостоятельной фазы, катализ называют гетерогенным.
Теория каталитических реакций исходит из некоторых общих положений: а) катализ как метод изменения скорости реакции применим только тогда, когда энергия Гиббса взаимодействия при данных условиях отрицательна (∆G<0); б) в присутствии катализатора изменяется механизм химической реакции, она протекает через новые стадии, каждая из которых характеризуется невысокой энергией активации. Таким образом действие катализатора сводится к тому, что он значительно снижает энергию активации катализируемой реакции; в) при катализе не изменяется тепловой эффект реакции; г) если катализируемая реакция обратима, катализатор не влияет на равновесие, не меняет константы равновесия и равновесных концентраций компонентов системы. Он в равной степени ускоряет и прямую, и обратную реакции, тем самым, сокращая время достижения равновесия; д) катализаторы обычно действуют избирательно, селективно. Катализатор, активно ускоряющий одно взаимодействие, безразличен к другому. Избирательность действия зависит не только от природы катализатора, но и от условий его применения.
Активность того или иного катализатора зависит от многих факторов. Изменяя эти факторы, можно соответствующим образом изменять активность и избирательность действия катализатора. Прежде всего, при неизменных условиях скорость каталитической реакции пропорциональна (в определенных пределах) количеству катализатора. Активность того или иного катализатора может быть резко повышена или понижена различными добавками. Добавки, увеличивающие активность катализатора, называются промоторами
Гомогенный катализ. Для объяснения механизма гомогенного катализа наибольшее распространение получила теория промежуточных соединений, предложенная французским химиком Сабатье и развитая в работах Н. Д. Зелинского и его школы. Согласно этой теории катализатор реагирует с исходными веществами, образуя нестойкие промежуточные соединения, последующие превращения которых приводят к образованию нужных продуктов реакции и регенерации катализатора.
Химическое взаимодействие катализатора с исходными веществами направляет реакцию по пути, отличному от того, что осуществляется в отсутствие катализатора. В результате этого уменьшается энергия активации протекающего взаимодействия и увеличивается его скорость.
Гетерогенный катализ. Гетерогенный катализ всегда начинается с адсорбции молекул исходных веществ на поверхности твердого катализатора. При этом только обратимая адсорбция является началом каталитической реакции. Необратимая хемосорбция приводит к образованию на поверхности катализатора устойчивых соединений и тем самым к снижению активности катализатора.
При обратимой адсорбции молекул исходных веществ поверхностью твердого катализатора происходит ослабление связей между атомами в молекулах адсорбата. За этот счет снижается энергия активации катализируемой реакции, течение которой с высокой скоростью осуществляется на поверхности катализатора.
В 1929 г. А. А. Баландиным была создана мультиплетная теория гетерогенного катализа, в основу которой положен принцип структурного и энергетического соответствия между катализатором и реагирующими веществами. Согласно этой теории, каталитически активными центрами катализатора являются мультиплеты — совокупности поверхностных атомов, участвующих в акте химического превращения. Катализатор активен лишь в том случае, если соблюдается соответствие расположения атомов в мультиплете и в реагирующей молекуле. Структурное соответствие обеспечивает избирательность катализатора. Вторым условием активности катализатора является энергетическое соответствие связей между атомами в молекулах реагирующих веществ и связей, которые образуют эти атомы с атомами катализатора. Мультиплетная теория позволяет рассчитывать оптимальные значения энергий связей и межатомных расстояний у реагирующих веществ и катализаторов и осуществлять выбор наилучшего катализатора.