Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ответы по химии.doc
Скачиваний:
25
Добавлен:
20.09.2019
Размер:
276.48 Кб
Скачать

Вопрос 8. Σ-, π-, δ- связь.

В зависимости от направления перекрывания атомных орбиталей различают σ-, π- и δ-связи.

σ-Связь возникает при перекрывании атомных орбиталей вдоль оси, соединяющей ядра взаимодействующих атомов (рис. II.4). Простейший случай σ-связи наблюдается у молекулы Н2, образующейся за счет перекрывания s-орбиталей атомов водорода (рис. II.4,а). Вследствие сферической формы s-орби­талей два s-электрона могут образовывать только такую связь, при которой перекрывание атомных орбиталей происходит вдоль оси, соединяющей ядра атомов. σ-Связь может возникнуть также при перекрывании s- и р-орбиталей (рис. 11.4,6), двух р-орбиталей (рис. 11,4, в), двух d-орбиталей (рис. II.4, г) d- и s-орбиталей и d- и р-орбиталей. σ-Связь возникает, если атомные р- и d-opбитали ориентированы вдоль оси связи.

Рис. II.4. Перекрывание различных электронных

обла­ков при образовании σ–связи

π-Связь осуществляется при перекрывании атомных орбиталей по обе стороны оси, соединяющей ядра атомов. При взаимо­действии двух р-орбиталей (рис. II.5, а), расположенных перпен­дикулярно оси, соединяющей ядра атомов, возникают две области перекрывания. Соответственно π-связь характеризуется двумя областями перекрывания, расположенными по обе стороны оси, соединяющей ядра атомов. π-Связь также может образоваться при перекрывании р- и d-орбиталей (рис. 11.5,6) или двух d-opбиталей (рис. П.5,в).

δ-Связь возникает при перекрывании двух d-орбиталей, расположенных в параллельных плоскостях (рис. II.6). Таким образом, s-электроны могут участвовать лишь в образовании σ-связи, р-электроны — в образовании σ- и π-связей, a d-электроны — как в образовании σ- и π-связей, так и δ-связей. Еще более разнообразны способы взаимодействия f-электронов.

π- и δ-Связи налагаются на σ-связи, вследствие чего обра­зуются двойные и тройные связи.

Число связей, образующихся между атомами, называется кратностью (порядком) связи. С увеличением кратности (порядка) связи изменяется длина связи и ее энергия. Энергия двойной связи не увеличивается в два раза, а энергия тройной связи не увеличивается в три раза по сравнению с энергией одинарной связи. Это обусловлено разницей в энергии σ- и π-связей.

Рис. II.5. Перекрывание электронных

облаков при образовании π-связи

Рис. II.6. Перекрывание элек­тронных облаков при образова­нии б-связи

Рис. II.6. Перекрывание элек­тронных облаков при образова­нии б-связи

Рис. II.6. Перекрывание элек­тронных облаков при образова­нии б-связи

Рис. II.6. Перекрывание элек­тронных облаков при образова­нии б-связи

Рис. II.6. Перекрывание элек­тронных облаков при образова­нии б-связи

Рис. II.6. Перекрывание элек­тронных облаков при образова­нии б-связи

Рис. II.6. Перекрывание элек­тронных облаков при образова­нии б-связи

Рис. II.6. Перекрывание элек­тронных

облаков при образова­нии δ-связи

Вопрос 9. Ионная связь и ее свойства.

Ионная связь осуществляется в результате образования и электростатического взаимодействия противоположно заряжен­ных ионов. Ионная связь может возникать лишь при больших различиях в значениях электроотрицательностей атомов.

Так как электрическое поле иона имеет сферическую симмет­рию, то в отличие от ковалентной ионная связь не обладает направленностью. Взаимодействие двух противоположно заря­женных ионов не приводит к полной взаимной компенсации их полей, они сохраняют способность притягивать и другие ионы. Поэтому в отличие от ковалентной ионная связь не обладает насыщаемостью. Из-за отсутствия у ионной связи направленно­сти и насыщаемости каждый ион окружен ионами противополож­ного знака, число которых определяется размерами и силой отталкивания одноименно заряженных ионов. Поэтому соедине­ния с ионной связью представляют собой кристаллические вещества. Весь кристалл можно рассматривать как единую гигантскую молекулу, состоящую из очень большого числа ионов. Лишь при высоких температурах, когда вещество переходит в газообразное состояние, ионные соединения могут существо­вать в виде неассоциированных молекул.

Ионную связь можно рассматривать как предельную поляр­ную химическую связь, для которой эффективный заряд атома близок к единице. В то же время для неполярной ковалентной связи эффективный заряд атомов равен нулю. Химическая связь большинства соединений является полярной, т. е. имеет промежу­точный характер между неполярной ковалентной и ионной связями. Ковалентная связь имеет частично ионный характер. Долю ионного характера связи назы­вают степенью ионности, которая количественно харак­теризуется эффективными зарядами атомов в молекуле. Степень ионности связи возрастает с увеличением разности электроотрицательности образующих ее атомов.