- •Вопрос 1 «Предмет и задача химии. Значение химии»
- •Вопрос 2. Строение атома. Модели атома (Морозова, Резерфорда, Бора). Теория Бора. Уравнение Планка. Принцип неопределенности Гейзенберга. Волновая функция.
- •Строение атома по Бору:
- •Вопрос 3. Квантово-механическое представление о строении атома. Квантовые числа и их физический смысл.
- •Вопрос 4. Распределение электронов в многоэлектронном атоме. Принцип Паули. Правило Гунда. Порядок заполнения электронных подуровней.
- •Вопрос 6. Ковалентная связь. Свойства ковалентной связи: прочность, полярность, насыщаемость, направленность, гибридизация, кратность.
- •Вопрос 7. Обменный и донорно-акцепторный механизм образования ковалентной связи.
- •Вопрос 8. Σ-, π-, δ- связь.
- •Вопрос 9. Ионная связь и ее свойства.
- •Вопрос 10. Водородная связь и межмолекулярное взаимодействие.
- •Вопрос 11. Комплексные соединения: строение, характер связи, диссоциация.
- •Вопрос 12. Химичёская термодинамика, термодинамические параметры (т, р, V). Внутренняя энергия. Первый закон термодинамики.
- •Вопрос 13
- •Вопрос 13 Энтальпия образования вещества. Закон Гесса и его применение.
- •Вопрос 14. Свободная энергия Гиббса. Самопроизвольность протекания реакций. Свободная энергия Гиббса
- •Вопрос 16. Химическая кинетика. Закон действующих масс гомогенных и гетерогенных систем. Скорость прямой и обратной реакции. Константа скорости химической реакции. Порядок и молекулярность реакции.
- •Вопрос17. Влияние температуры на скорость реакции, правило Вант-Гоффа, энергия активации, уравнение Аррениуса
- •Вопрос 18. Гомогенный и гетерогенный катализ. Катализаторы и ингибиторы.
- •Вопрос 19
- •Вопрос 19. Химическое равновесие. Смещение химического равновесия при изменении условий протекания химических процессов. Принцип Ле-Шателье
- •Вопрос 20. Растворы Свойства растворов.
- •Вопрос 21. Способы выражения концентрации растворов(процентная, молярность, нормальность, моляльность, титр).
- •Вопрос 22. Закон Рауля. Осмос. Физический смысл эбуллиоскопической и криоскопической постоянной.
- •Вопрос 23. Растворы электролитов. Электролитическая диссоциация. Степень диссоциации. Константа диссоциации.
- •Вопрос 24 Ионное произведение воды. Водородный показатель (рН) растворов.
- •Вопрос 25. Гидролиз солей. Константа гидролиза.
- •Вопрос 26. Произведение растворимости.
- •Вопрос 27. Дисперсные системы. Коллоидные растворы, свойства.
- •Вопрос 28.Строение мицеллы коллоидов. Оптические и электрические свойства.
- •Вопрос 29. Окислительно-восстановительные реакции (овр). Ионно-электронный метод уравнивания овр. Термодинамическая вероятность протекания овр.
- •Вопрос 30. Электродный потенциал. Стандартный электродный потенциал. Водородный потенциал. Уравнение Нернста.
- •Вопрос 31. Гальванический элемент: устройства, протекающие процессы на аноде и катоде.
- •Вопрос 32. Эдс и энергия Гиббса гальванического элемента.
- •Вопрос 33. Электролиз. Законы Фарадея. Электрохимический эквивалент. Выход по току.
- •Вопрос 34. Поляризация, ее причины. Перенапряжение.
- •Вопрос 35. Электролиз расплавов и растворов на растворимых и нерастворимых электродах. Последовательность разряда ионов при электролизе на аноде и катоде.
Вопрос 6. Ковалентная связь. Свойства ковалентной связи: прочность, полярность, насыщаемость, направленность, гибридизация, кратность.
Химическая связь между атомами, осуществляемая обобществленными электронами, называется ковалентной связью. Ковалентная связь является универсальным типом химической связи.
Ковалентная связь существует между атомами как в молекулах, так и в кристаллах. Она возникает как между одинаковыми атомами, так и между разными атомами. Характерными особенностями ковалентной связи являются её насыщаемость и направленность. Насыщаемость ковалентных связей обусловлена тем, что в химическом взаимодействии участвуют электроны только внешних энергетических уровней, т. е. ограниченное число электронов.
Электронные облака атомов имеют определенную пространственную ориентацию. Соответственно и область перекрывания электронных облаков находится в определенном направлении по отношению к взаимодействующим атомам. Поэтому ковалентная связь обладает направленностью. Характер распределения электронной плотности при образовании связи зависит от вида взаимодействующих атомов.
Особенности КС:
Прочность КС – это свойства характер длинной связи (межъядерное пространство) и энергии энергией связи.
Полярность КС. В молекулах, содержащих ядра атомов одного и того же элемента, одна или несколько пар электронов в равной мере принадлежат обоим атомам, каждое ядро атома с одинаковой силой притягивает пару связывающих электронов. Такая связь называется неполярной ковалентной связью.
Если пара электронов, образующих химическую связь, смещена к одному из ядер атомов, то связь называют полярной ковалентной связью.
Насыщаемость КС – это способность атома участвовать только в определенном числе КС, насыщаемость характеризует валентностью атома. Количественные меры валентности явл. число не спаренных электронов у атома в основном и в возбужденном состоянии.
Направленность КС. Наиболее прочные КС образуются в направлении максимального перекрывания атомных орбиталей, т.е. мерой направленности служит валентный угол.
Гибридизация КС – при гибридизации происходит смещение атомных орбиталей, т.е. происходит выравнивание по энергии и по форме. Существует sp, sp2, sp3 –гибридизация. sp – форма молекулы линейная (угол 1800), sp2 – форма молекулы плоская треугольная (угол 1200), sp3 - форма тетраэдрическая (угол 109028).
Кратность КС или делоколизация связи – Число связей, образующихся между атомами, называется кратностью (порядком) связи. С увеличением кратности (порядка) связи изменяется длина связи и ее энергия.
Вопрос 7. Обменный и донорно-акцепторный механизм образования ковалентной связи.
Механизм возникновения ковалентных связей путем обобществления неспаренных электронов двух атомов получил название обменного механизма. Образование ковалентной связи может происходить также при взаимодействии одного атома или иона с заполненной атомной орбиталью с другим атомом или ионом, имеющим вакантную (свободную) атомную орбиталь. Такой механизм образования ковалентной связи называется донорно-акцепторным. Атом или ион, поставляющий пару электронов, называют донором, а атом или ион, к которому эта пара электронов перемещается, — акцептором. Согласно методу ВС, ковалентная связь по донорно-акцепторному механизму возникает при перекрывании вакантной орбитали акцептора с заполненными орбиталями донора или донорной группы. Поэтому донорная группа должна содержать по меньшей мере одну неподеленную пару электронов
Пример:
А + В → А В – механизм обмена.
НСl
1H 1s1 H· + *H → H·H
17Cl … 3s23p5 H· + ·Cl: → H:Cl
А: +