Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
emm.docx
Скачиваний:
2
Добавлен:
31.08.2019
Размер:
104.52 Кб
Скачать

7.Формы записи задачи лп

Общ. задача ЛП: Max(min)F= ∑Cj*xj

∑ aijxj≤ bi, i=1,m1

∑ aijxj= bi, i=m1+1,m2

∑ aijxj≥ bi, i=m2+1,m, xj≥ 0, j=1,m, xj – произвольн., j= n2+1,n

Симметр.ф.:

MaxF= ∑Cj*xj

∑ aijxj≤ bi, i=1,m, xj≥ 0, j=1,n или

MinF= ∑Cj*xj

∑ aijxj≥ bi, i=1,m, xj≥ 0, j=1,n

Канонич.ф.:

Max(min)F= ∑Cj*xj

∑ aijxj= bi, i=1,m, xj≥ 0, j=1,n

Рассм. 2 вида записи- матричн.и векторн. Введём обознач.Задачу записать матрично:

Max(min)F= C*X; A*X=B; X≥0

Векторн:

Max(min)F= C*X

А1X1+ А2X2+…+ АnXn=B; X≥0

Задачу миним-ции можно заменить максим-цией и наоборот:

Min f(x1*, x2*… xn*)= - max (-f(x1*, x2*… xn*))

8.Переход к канон.Ф.:

Рассм.задачу:

Max(min)F= ∑Cj*xj (1)

∑ aijxj≤ bi, i=1,m1 (2)

∑ aijxj≥ bi, i=m1+1,m (3)

xj≥ 0, j=1,n (4)

Преобраз.к канонич.виду.Введём m дополнит.неотриц.перемен: xn+i ≥ 0, i=1,m. Чтобы нер-во (2) преобраз. в р-во,к лев.ч. прибавим дополнит.переменные xn+i ≥ 0, i=1,m1. Чтобы нер-во (3) преобраз.в р-во- вычтем доп.перемен. xn+i ≥ 0, i=m1+1,m. Нер-ва примут вид:

∑ aijxj + xn+i = bi , i=1,m1 (5)

∑ aijxj - xn+i = bi , i=m1+1,m (6)

Сист-у ур-ий (5)-(6) наз. Эквивалентной сист-е (2)-(3) с усл. Неотриц-сти дополнит.перем-ых. Они в Цф вводятся с коэф-тами= 0. В рез-те получим задачу в канонич.форме:

Max(min)F= ∑Cj*xj + ∑0*xn+I (7)

∑ aijxj + xn+i = bi , i=1,m1 (8)

∑ aijxj - xn+i = bi , i=m1+1,m (9)

xj≥ 0, j=1,n , xn+1≥ 0, i=1,m (10)

Теорема: Каждому допустим. реш-ию(x10, x20… xn0) задачи (1)-(4) соотв. Вполне определ. допуст-ое реш-е (x10, x20… xn0, xn+10… xn+m0) задачи (7)-(10) и наоборот,где , xn+i0 ≥0, i=1,m.

Т.к. дополнит.перем-е ввод-ся в ЦФ (7) с коэф-ами=0,то знач-я ЦФ (1)и (7) при соотв.допуст.реш-ях одинаковы.Следует, что данные ЦФ на мн-ве соотв.допуст.реш-й достиг. Экстрем.значи-я одновременно. Оптим.реш-ю (1)-(4) соотв. реш-е (7)-(10),т.е. исх.задачи и её канонич.ф. эквивалентны.

18. Правила пересчёта

1 правило: элемент новой табл., стоящей на месте разрешающего зам-ся обр-ой величиной.

2 прав.: оставшиеся эл-ты разреш-щей строки дел-ся на разреш. Эл-т.

3 прав.: оставш-ся эл-ты разреш-го столбца делим на разр. Эл-т и меняем знак на противоп-й.

4 прав.: все ост-ся эл-ты рассч-ся по правилу прямоуг-ка.

9. Переход к сим-ной форме записи задачи, осущ-ся 2-мя спос-ми:

1сп. пусть к задаче ЛП имеются уравн-я рав-ва . Каждое такое огранич-е рав-ва эквив-но в сис-ме нер-в: , . Нер-во вида «≥»*(-1) преобр-ся к нер-вам «≤» и наоборот. 2сп. Рассм-м задачу в канон-м виде: max(min) F= , , i=1,m, xj≥0, j=1,n преобр-м её к симметр-му виду сис-му огран-й , нап-р, методом Гаусса, можно привести к виду , i=1,m пусть ранг =m, m<n, тогда сис-ма имеет бескон-ное множ-во реш-й. Перем-ные x1,x2,…,xm наз-ся БП, а перем-ные xm+1,xm+2…xn –СП, выразим ЦФ через СП, для этого подставим БП в ЦФ max(min) F= . Испол-я данные обознач-я ЦФ можно записать в след-м виде: F= ▲0-jxj. Из сис-мы , i=1,m в силу того, что все xj≥0, j=1,n можем записать, что ,i=1,m. Т. Обр. получили симметр-ную форму записи , , i=1,m , xj≥0, j=m+1,n. Отметим, что в любом случае при подстановке БПпп в ЦФ справедлива формула -это испол-ся для контроля выч-ий при реш задачи симп-ным мет-м. Если некот-е переем-е явл-ся отриц, то они замен-ся разностью 2-х полож-х xk=xk’-xk’’, где xk’≥0, xk’’≥0

10. Рассм-м задачу с 2-мя перем-ми max F=c1x1+c2x2 --1, a11x1+a12x2 {≤,=,≥}b1 2, am1x1+a m2x2 {≤,=,≥}bm 3. Каждое из огран-й 2,3 задаёт на плоскости некот-ю полуплоскость. Пол-ть явл-ся выпуклым множ-м. Пересеч-м любого числа множ-м явл-ся вып. мн-во (из этого след-т)ОДР 1-2 явл-ся выпуклое множ-во. Пусть сис-ма огран-й образ-т ОДР след-го вида (рисунок)

F=F0, получ c1x1+c2x2 = F0 – урав-е прямой линии. В точках прямой (NM) ЦФ прин-т одно и тоже постоянное знач-е F0 , считая F-парам-м получ уравн-е семейс-во парал-х прямых, кот-е наз-ся линиями уровня ЦФ. Для того, чтобы устан-ть направл-е возраст-я (убыв-я) ЦФ найдем её частные произ-ные по неизвестным парам-м .Вектор с(с1,с2) наз-ся градиентом и указ. Напрвл-е наискор-го возраст-я ЦФ вектор –с(-с1,-с2) наз-ся антиград-м и указ-т напр-ние наискор-го убыв-я ЦФ. Векторы с, -с перпенд-на прямым c1x1+c2x2 = F.

11. Рассм зад-чу с 2-мя переменными maxF=c1x1+c2x2

a11x1+ a12x2{≤,≥,=}b1

…………..

am1x1+am2x2{≤,≥,=}bm, ,x1≥0,x2≥0

Каждое из огранич,задает на плоскости x1ox2 нект-ую плоскость. Полуплоскость явл. выпукл множ-ом. Пересеч люб. числа выпуклых мно-в явл. вып. мно-во,отсюда ОДР задачи явл.выпуклое мн-во.С1x1+ c2x2=F0 – ур-е прямой линии.В точках прямой NM ЦФ прин одно и то же пост знач F0,считая параметром получ ур-е семейства паралл прямых,к-е наз-ся линиями уровня ЦФ.Для того,чтобы устаноить направл возр(убыв) ЦФ найдем ее частные произв-ые по неизвестным параметрам.Вектор С=(С12) наз-ся град-м и ук-ет направ-е наискор-го возр ЦФ. Вектор –С=(-С12) – антиградиент и указывает убывание ЦФ.Граф.метод решения:1.С учетом сис-мы ограничений строим ОДР;2.строим вектор градиент;3.провод. прямую перпенд.вектору градиенту в начале координат;4.решая на max перемещ F=0 до крайней точки ОДР, если на min F=0 – до 1-ой точки ОДР;5.находим оптим-ое реш-ие Х8,экстрем-ое зн-ие ЦФ F*.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]