Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
МИТОЗ.docx
Скачиваний:
1
Добавлен:
07.07.2019
Размер:
31.05 Кб
Скачать

Уровни упаковки днк

Присутствие гистонов во всех эукариотических клетках, их сходство даже у очень отдаленных видов, обязательность в составе хромосом и хроматина - все это говорит о чрезвычайно важной роли этих белков в жизнедеятельности клеток. Этапным событием в изучении упаковки ДНК в составе хроматина стало открытие нуклеосом - частиц, в которых происходит первый этап упаковки ДНК в хроматине. Сердцевина нуклеосомы всегда консервативна, содержит восемь молекул: по две молекулы гистонов Н4, НЗ, Н2А, Н2В. По поверхности сердцевины располагается участок ДНК из 146 нуклеотидных пар, образующий 1,75 оборота вокруг сердцевины. Небольшой участок ДНК остается несвязанным с сердцевиной, он называется линкером (рис. 3.8). В разных объектах линкерный участок может варьировать от 8 до 114 нуклеотидных пар на нуклеосому. Рассчитано, что на весь гаплоидный геном человека (3 × 109 пар оснований) приходится 1,5 × 107 нуклеосом. Общий вид хроматина, представленного молекулой ДНК, упакованной с помощью нуклеосомных структур, можно сравнить с бусами на нитке (рис. 3.9). Нуклеосомы способны к самосборке при наличии в пробирке ДНК и гистонов в определенном соотношении. Первый нуклео-сомный уровень компактизации ДНК увеличивает плотность упаковки ДНК в 6-7раз.

В следующий этап упаковки нуклеосомная структура хроматина вовлекается с помощью гистона HI, который связывается с линкерной частью ДНК и поверхностью нуклеосомы. Благодаря сложному взаимодействию всех компонентов возникает упорядоченная структура спирального типа, которую часто называют соленоидом (рис. 3.10). Она повышает компактность ДНК еще в 40 раз. Поскольку соленоидная структура имеет сниженную способность связываться с белками, обеспечивающими транскрипцию, то считается, что этот уровень компактизации ДНК может играть роль фактора, инактивирующего гены. Некоторые авторы рассматривают соленоидную структуру как один из возможных вариантов упаковки хроматина с помощью гистона HI и полагают

вероятным существование и других морфологических вариантов, например, нуклеомер, или сверхбусин.

Более высокие уровни компактизации ДНК в хроматине связаны с негистоновыми белками. На их долю приходится около 20% всех белков хроматина. Эту сборную группу белков отличает широкий спектр свойств и функций. Всего фракция негистоновых белков объединяет около 450 индивидуальных белков, свойства и конкретные функции которых еще не достаточно изучены. Выяснено, что некоторые из них специфично связываются с определенными участками ДНК, в результате чего фибриллы хроматина в местах связывания ДНК с негистоновыми белками образуют петли. Таким образом, более высокие уровни упаковки ДНК в составе хроматина обеспечиваются не спирализацией нитей хроматина, а образованием поперечной петлистой структуры вдоль хромосомы. На всех указанных этапах компактизации ДНК хроматин представлен в активной форме, в нем происходит транскрипция, синтез всех типов молекул РНК. Такой хроматин называют эухроматином. Дальнейшая упаковка хроматина ведет к переходу его в неактивное состояние с образованием гетерохроматина. Этот процесс связан со спирализацией групп петель и образованием из фибрилл хроматина розеткоподобных структур, которые обладают оптической и электронной плотностью и называются хромомерами .Предполагается, что вдоль хромосомы расположено большое количество хромомер, соединенных между собой в единую структуру участками хроматина с нуклеосомной или соленоидной упаковкой ДНК. Каждая пара гомологичных хромосом имеет свой хромомерный рисунок, который можно выявить с помощью специальных методов окрашивания при условии спирализации хроматина и перехода его в состояние хромосом.

Петельно-розеточная структура хроматина обеспечивает не только упаковку ДНК, но и организует функциональные хромосом, поскольку в своих основаниях петли ДНК связаны с негистоновыми белками, в состав которых могут входить ферменты репликации, обеспечивающие удвоение ДНК, и ферменты транскрипции, благодаря которым происходит синтез всех типов РНК.

Участки ДНК, упакованные в виде гетерохроматина, могут иметь двоякую природу. Различают два типа гетерохроматина: факультативный и конститутивный (структурный). Факультативный гетерохроматин представляет собой участки генома, временно инактивированные в тех или иных клетках. Примером такого хроматина служит половой гетерохроматин инактивированной Х-хромосомы в соматических клетках женщин. Структурный гетерохроматин во всех клетках постоянно находится в неактивном состоянии и, вероятно, выполняет структурные или регуляторные функции

Реплика́ция ДНК — процесс синтеза дочерней молекулы дезоксирибонуклеиновой кислоты, идущий во время синтетической (S) фазы жизненного цикла клетки на матрице родительской молекулы ДНК. При этом генетический материал, зашифрованный в ДНК, удваивается и в процессе последующего деления делится между дочерними клетками. Репликацию ДНК осуществляет сложный ферментный комплекс, состоящий из 15-20 различных белков.

Ферменты (хеликазатопоизомераза) и ДНК-связывающие белки расплетают ДНК, удерживают матрицу в разведённом состоянии и вращают молекулу ДНК. Правильность репликации обеспечивается точным соответствием комплементарных пар оснований и активностью ДНК-полимеразы, способной распознать и исправить ошибку. Репликация у эукариот осуществляется несколькими разными ДНК-полимеразами. Далее происходит закручивание синтезированных молекул по принципу суперспирализации и дальнейшей компактизации ДНК. Синтез энергозатратный.

Цепи молекулы ДНК расходятся, образуют репликационную вилку, и каждая из них становится матрицей, на которой синтезируется новая комплементарная цепь. В результате образуются две новые двуспиральные молекулы ДНК, идентичные родительской молекуле.