Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
СА_пособие.doc
Скачиваний:
34
Добавлен:
28.04.2019
Размер:
2.19 Mб
Скачать

6.6. Выбор при нечеткой исходной информации

Проблемы принятия решений применительно к функционированию сложных систем занимают в настоящее время особое место в инфор­мационных технологиях. Математические методы широко применяются для описания и анализа сложных экономических, социальных и других систем. Теория оптимизации создала совокупность методов, помогаю­щих при использовании ЭВМ эффективно принимать решения при изве­стных и фиксированных параметрах. Значительные успехи имеются и в том случае, когда параметры - случайные величины с известными законами распределения. Трудности возникают, когда параметры систем или ее составных элементов оказываются неопределенными, хотя, может быть, и не случайными, и когда они в то же время сильно влия­ют на результаты решения.

Специалисты часто сталкиваются с необходимостью расчетов при наличии в уравнениях нечетко заданных параметров или неточной тех­нологической информации. Такого рода ситуации могут возникать как вследствие недостаточной изученности объектов, так и из-за участия и управлении человека или группы лиц. Особенность систем такого рода состоит в том, что значительная часть информации, необходимой для их математического описания, существует в форме представлений или пожеланий экспертов. Но в языке традиционной математики нет объек­тов, с помощью которых можно было бы достаточно точно отразить нечеткость представлений экспертов.

При построении формальных моделей чаще всего пользуются де­терминированными методами и тем самым вносят определенность в те ситуации, где ее в действительности не существует. Неточность задания тех или иных параметров при расчетах практически не прини­мается во внимание или, с учетом определенных предположений и до­пущений, неточные параметры заменяются средними или средневзве­шенными значениями. Однако обычные количественные методы ана­лиза систем по своей сути мало пригодны и не эффективны для систем, при описании параметров которых используется нечеткая информация. Для систем, сложность которых превосходит некоторый пороговый уро­вень, точность и практический смысл становятся почти исключающи­ми. Именно в этом смысле точный количественный анализ в реальных экономических, социальных и других систем, связанных с участием человека, не имеет требуемого практического значения.

Иной подход опирается на предпосылку о том, что элементами мышления человека являются не числа, а элементы некоторых нечет­ких множеств или классов объектов, для которых переход от «принад­лежности к классу» к «непринадлежности» не скачкообразен, а непре­рывен. Традиционные методы недостаточно пригодны для анализа по­добных систем именно потому, что они не в состоянии охватить нечет­кость человеческого мышления и поведения.

Теория нечетких (размытых) множеств была впервые предложена американским математиком Лотфи Заде в 1965 г. и предназначалась для преодоления трудностей представления неточных понятий, анали­за и моделирования систем, в которых участвует человек.

Для обращения с неточно известными величинами обычно применяется аппарат теории вероятностей. Однако случайность связана с нео­пределенностью, касающейся принадлежности некоторого объекта к обычному множеству. Это различие между нечеткостью и случайнос­тью приводит к тому, что математические методы нечетких множеств совершенно не похожи на методы теории вероятностей. Они во многих отношениях проще вследствие того, что понятию вероятностной меры в теории вероятностей соответствует более простое понятие функции принадлежности в теории нечетких множеств. По этой причине даже в тех случаях, когда неопределенность в процессе принятия решений может быть представлена вероятностной моделью, обычно удобнее оперировать с ней методами теории нечетких множеств без привлече­ния аппарата теории вероятностей.

Подход на основе теории нечетких множеств является, по сути дела, альтернативой общепринятым количественным методам анализа сис­тем. Он имеет три основные отличительные черты:

• вместо или в дополнение к числовым переменным используются нечеткие величины и так называемые «лингвистические» переменные;

• простые отношения между переменными описываются с помощью нечетких высказываний;

• сложные отношения описываются нечеткими алгоритмами.

Такой подход дает приближенные, но в то же время эффективные способы описания поведения систем, настолько сложных и плохо опре­деленных, что они не поддаются точному математическому анализу. До работ Л. Заде подобная качественная информация, по существу, просто терялась - было непонятно, как ее использовать в формальных схемах анализа альтернатив. Теоретические же основания данного под­хода вполне точны и строги в математическом смысле и не являются сами по себе источником неопределенности. В каждом конкретном случае степень точности решения может быть согласована с требова­ниями задачи и точностью имеющихся данных. Подобная гибкость составляет одну из важных черт рассматриваемого метода. Для реаль­ных сложных систем характерно наличие одновременно разнородной информации:

• точечных замеров и значений параметров;

• допустимых интервалов их изменения;

• статистических законов распределения для отдельных величин;

• лингвистических критериев и ограничений, полученных от специа­листов-экспертов и т.д.

Наличие в сложной многоуровневой иерархической системе управления одновременно различных видов неопределенности делает необ­ходимым использование для принятия решений теории нечетких мно­жеств, которая позволяет адекватно учесть имеющиеся виды неопре­деленности.

Соответственно и вся информация о режимах функционирования подсистем, областях допустимости и эффективности, целевых функциях, предпочтительности одних режимов работы перед другими, о риске работы на каждом из режимов для подсистем и т.д. должна быть пре­образована к единой форме и представлена в виде функций принадлеж­ности. Такой подход позволяет свести воедино всю имеющуюся нео­днородную информацию: детерминированную, статистическую, лингви­стическую и интервальную.

Разработанные в настоящее время количественные методы приня­тия решений помогают выбирать наилучшие из множества возможных решений лишь в условиях одного конкретного вида неопределенности или в условиях полной определенности. К тому же, большая часть су­ществующих методов для облегчения количественного исследования в рамках конкретных задач принятия решений базируется на крайне упрощенных моделях действительности и излишне жестких ограниче­ниях, что уменьшает ценность результатов исследований и часто при­водит к неверным решениям. Применение для оперирования с неопре­деленными величинами аппарата теории вероятности приводит к тому, что фактически неопределенность, независимо от ее природы, отожде­ствляется со случайностью, между тем как основным источником нео­пределенности во многих процессах принятия решений является нечет­кость или расплывчатость.

В отличие от случайности, которая связана с неопределенностью, касающейся принадлежности или непринадлежности некоторого объекта к нерасплывчатому множеству, понятие «нечеткость» относится к клас­сам, в которых могут быть различные градации степени принадлежно­сти, промежуточные между полной принадлежностью и непринадлеж­ностью объектов к данному классу.

Вопрос выбора адекватного формального языка является очень важным, поэтому следует отметить преимущества описания процесса принятия решений в сложной многоуровневой иерархической системе на основе теории нечетких множеств. Этот язык дает возможность адек­ватно отразить сущность самого процесса принятия решений в нечет­ких условиях для многоуровневой системы, оперировать с нечеткими ограничениями и целями, а также задавать их с помощью лингвисти­ческих переменных. Поэтому математический аппарат теории нечетких множеств принят в настоящее время как основной аппарат описания многоуровневых иерархических систем и процессов принятия решений в сложных системах.

Одним из важных направлений применения этого нового подхода является проблема принятия решений при нечеткой исходной информа­ции. Здесь появляется возможность сузить множество рассматривае­мых вариантов или альтернатив, отбросив те из них, для которых име­ются заведомо более приемлемые варианты или альтернативы, подоб­но тому, как это делается при использовании принципа Парето.

В традиционной прикладной математике множество понимается как совокупность элементов (объектов), обладающих некоторым общим свойством. Например, множество чисел, не меньших заданного числа, множество векторов, сумма компонент каждого из которых не превос­ходит единицы, и т.п. Для любого элемента при этом рассматриваются лишь две возможности: либо этот элемент принадлежит данному мно­жеству (т.е. обладает данным свойством), либо не принадлежит (т.е. не обладает данным свойством). Таким образом, в описании множе­ства в обычном смысле должен содержаться четкий критерий, позво­ляющий судить о принадлежности или непринадлежности любого эле­мента данному множеству.

Понятие нечеткого множества - попытка математической форма­лизации нечеткой информации с целью ее использования при построе­нии математических моделей сложных систем. В основе этого поня­тия лежит представление о том, что составляющие данное множество элементы, обладающие общим свойством, могут обладать этим свой­ством в различной степени и, следовательно, принадлежать данному множеству с различной степенью. При таком подходе высказывания типа «элемент принадлежит данному множеству» теряют смысл, по­скольку необходимо указать «насколько сильно» или с какой степенью рассматриваемый элемент принадлежит данному множеству.

Один из простейших способов математического описания нечетко­го множества - характеризация степени принадлежности элемента множеству чисел, например, из интервала [0, 1]. Пусть Х - некоторое множество элементов (в обычном смысле). Нечетким множеством С в X называется совокупность пар вида (xc(x), )где х Є X, а μc(x ) - функция, называемая функцией принадлежности нечеткого множества С, данная функция принимает значения из интервала [0,1]. Функцией принадлежности называется функция, которая позволяет вычислить степень принадлежности произвольного элемента универсального мно­жества к нечеткому множеству. Значение μс(х) этой функции для конк­ретного х называется степенью принадлежности этого элемента нечет­кому множеству С. Как видно из этого определения, нечеткое множе­ство полностью описывается своей функцией принадлежности.

Обычные множества составляют подкласс класса нечетких мно­жеств. Действительно, функцией принадлежности обычного множества является его характеристическая функция

Нечеткое множество представляет собой более широ­кое понятие, чем обычное множество, в том смысле, что функция при­надлежности нечеткого множества может быть, вообще говоря, произ­вольной функцией или даже произвольным отображением.

Рассмотрим подход к решению задач выбора, в которых находит при­менение теория нечетких множеств. Основным предположением в дан­ном подходе является допущение о том, что цели принятия решений и множество альтернатив рассматриваются как равноправные нечеткие подмножества некоторого универсального множества альтернатив. Это позволяет определить решение задачи в относительно простой форме.

Пусть Х - универсальное множество альтернатив, т.е. универсаль­ная совокупность всевозможных выборов лица, принимающего реше­ния. Нечеткой целью в X является нечеткое подмножество, которое будем обозначать G. Описывается нечеткая цель функцией принадлеж­ности Допустим, что X представляет собой числовую ось. Тогда нечеткой целью принятия решений может быть нечеткое множество типа «величина х должна быть примерно равна 5» или «желательно, чтобы величинах была значительно больше 10» и т.п. Бу­дем полагать, что присутствующие в подобных описаниях нечеткие понятия вполне точно описаны функциями принадлежности соответству­ющих нечетких множеств.

Чем больше степень принадлежности альтернативы х нечеткому множеству целей, т.е. чем больше значение μG(х), тем больше степень достижения этой цели при выборе альтернативы х в качестве решения.

Нечеткие ограничения или множества допустимых альтернатив также описываются нечеткими подмножествами множества Х. В приведенном примере, когда х элемент числовой оси, нечеткие ограниче­ния могут иметь, например, такой вид «х не должно быть много боль­ше 30», «х должно быть не слишком большим» и т.п. Как и прежде, здесь полагается, что приведенные в качестве примера понятия описаны фун­кциями принадлежности соответствующих нечетких множеств, которые будем обозначать μс(х).

Более общей является постановка задачи, в которой нечеткие цели и ограничения представляют собой подмножества различных множеств. Пусть, как и выше, Xмножество альтернатив и пусть задано одно­значное отображение φ: X — У, под элементами множества У будем понимать оценки показателей качества или эффективности системы. Нечеткая цель при этом будет задаваться в виде нечеткого подмноже­ства множества оценок У, т.е. в виде функции

Задача при этом сводится к прежней постановке, т.е. к случаю, ког­да цель - нечеткое подмножество X, с использованием следующего приема. Определим нечеткое множество альтернатив обеспечива­ющих достижение заданной цели μG. Это множество представляет со­бой прообраз нечеткого множества μG при отображении φ, т.е.

После этого исходная задача рассматривается как задача достижения нечеткой цели при заданных нечетких ограничениях.

Перейдем теперь к определению решения задачи достижения не­четкой цели. Грубо говоря, решить задачу, означает достичь цели и удов­летворить ограничениям, причем в данной нечеткой постановке следу­ет говорить не просто о достижении цели, а о ее достижении с той или иной степенью, также следует учитывать и степень выполнения огра­ничений. В излагаемом подходе оба этих фактора учитываются следу­ющим образом. Пусть некоторая альтернатива х обеспечивает дости­жение цели (или соответствует цели) со степенью μG(x) и удовлетво­ряет ограничениям (или является доступной) со степенью μC(x). Тогда полагается, что степень принадлежности этой альтернативы решению задачи равна минимальному из этих чисел. Иными словами, альтерна­тива, допустимая со степенью, например 0,3, с той же степенью при­надлежит нечеткому решению, несмотря на то, что она обеспечивает достижение цели со степенью, равной, например, 0,8.

Таким образом, нечетким решением задачи достижения нечеткой цели называется пересечение нечетких множеств цели и ограничений, т.е. функция принадлежности решений μD(х) имеет вид

При наличии нескольких целей и нескольких ограничений нечеткое решение описывается функцией принадлежности:

Если различные цели и ограничения отличаются по важности и заданы соответствующие коэффициенты относительной важности целей λi , и ограничений νj ,то функция принадлежности нечеткому решению, т.е. альтернативы, реализующей правило

Один из наиболее распространенных в литературе способов реше­ния задач выбора при нечеткой исходной информации состоит в выборе альтернативы, имеющей максимальную степень принадлежности нечет­кому решению, т.е. альтернативы, реализующей правило

Следует подчеркнуть, что техника, развиваемая в работах Л. Заде и его последователей, основывается на использовании функций принад­лежности. Эти функции всегда являются гипотезами! Они дают субъек­тивное представление исследователя об особенностях анализируемой операции, о характере ограничений и целей исследования. Это всего лишь новая форма утверждения гипотез, которая открывает и новые возмож­ности.

В заключение данного параграфа следует отметить, что различие между нечеткостью и случайностью приводит к тому, что математи­ческие методы нечетких множеств совершенно не похожи на методы теории вероятностей. Они во многих отношениях проще вследствие того, что понятию вероятностной меры в теории вероятностей соответству­ет более простое понятие функции принадлежности в теории нечетких множеств. По этой причине даже в тех случаях, когда неопределенность в процессе принятия решений может быть представлена вероятност­ной моделью, обычно удобнее оперировать с ней методами теории не­четких множеств без привлечения аппарата теории вероятностей.

Получение во всех этих моделях решений в нечеткой форме позво­ляет довести до сведения специалиста, принимающего решение, что если он согласен или вынужден довольствоваться нечеткой формули­ровкой проблемы и нечеткими сведениями о модели, то он должен быть удовлетворен и нечетким решением задачи.

6.7. Проблема оптимизации и экспертные методы принятия решений

Рассмотренные до настоящего времени задачи выбора заключались в том, чтобы в исходном множестве альтернатив найти оптимальные. Задача нахождения оптимальной альтернативы заключается в поиске экстремума заданного критерия эффективности. То есть считается, что исследователем сформирован критерий, который выступает в качестве способа сравнения вариантов решения. Предполагается также, что наряду с критерием имеются ограничения, которые также оказывают влияние на результат выбора. Причем следует иметь в виду, что при изменении ограничений при одном и том же критерии результат выбора может оказаться другой.

Идея оптимальности является центральной идеей кибернетики. Понятие оптимальности вошло в практику проектирования и эксплуа­тации сложных технических систем, получило строгое и точное пред­ставление в математических теориях, широко используется в админи­стративной практике. Данное понятие сыграло важную роль в форми­ровании системных представлений. Осознавая ведущую роль оптими­зационного подхода при решении задач выбора, следует остановиться на ряде ограничений, которые необходимо осознавать при применении данного подхода. Охарактеризуем их.

1. Оптимальное решение часто оказывается чувствительным к не­значительным изменениям в условиях задачи. В результате изменения условий или предположений, при которых формировалась модель зада­чи принятия решений, могут получиться выводы, существенно отлича­ющиеся друг от друга. В связи с этим в теории оптимальности разви­вается такое направление как исследование устойчивости решения, а также анализ результатов решения на чувствительность к изменению входных параметров, условий и предположений.

2. При решении практических задач оптимизации следует учиты­вать, что анализируемая система имеет взаимосвязи с другими систе­мами, а зачастую она является подсистемой какой-либо гиперсистемы. В связи с этим требуется увязывать цели анализируемой системы с целями других систем и в особенности с глобальными целями гиперси­стемы. В этом случае постановка задачи оптимизации для анализируемой системы может иметь подчиненное значение по отношению к по­становкам задач для других систем. Тогда задача сведется к задаче локальной оптимизации. В этом случае локальная оптимизация может привести к результату, отличающемуся от того, который потребуется от системы при оптимизации целевых функций гиперсистемы. Отсюда следует вывод, что необходимо увязывать критерии анализируемой си­стемы с критериями других систем и, в особенности, гиперсистемы.

3. При использовании оптимизационного подхода не следует отож­дествлять цели системы и критерии, с помощью которых решается задача выбора. Критерий и цель относятся друг к другу как модель и оригинал. Многие цели трудно или даже невозможно количественно описать. Количественный критерий является лишь приближением цели. Критерий характеризует цель лишь косвенно, иногда лучше, иногда хуже, но всегда приближенно.

4. В постановке задачи оптимизации наряду с критериями не менее важную роль играют ограничения. Даже небольшие изменения ограни­чений существенно сказываются на результате решения. Еще более разительный эффект можно получить, исключая одни ограничения и добавляя другие. Отсюда требуется сделать вывод о необходимости тщательного анализа всех условий, при которых решается задача вы­бора. Если при постановке задачи не проведен должным образом ана­лиз условий и в результате не сформирован в полном объеме набор ог­раничений, это может наряду с оптимизацией критерия привести к не­предвиденным сопутствующим эффектам.

Подводя итог сказанному, можно сформулировать отношение к идее оптимизации с позиций системного анализа. Оно состоит в следующем: оптимизация - это мощное средство повышения эффективности, но использовать его следует все более осторожно по мере возрастания сложности проблемы. Многие задачи системных исследований могут быть достаточно хорошо формализованы, сведены к математическим моделям, позволяющим ставить и решать оптимизационные задачи. Однако даже после преодоления сложностей формализации системотех­нических проблем остаются некоторые особенности, которые сказыва­ются на результате решения. А именно, это неустойчивость оптималь­ных решений, сильная чувствительность к изменению условий, и нео­днозначность постановки многокритериальных задач. Меры преодоле­ния данных обстоятельств состоят в проведении анализа решения на чувствительность, всяческое использование априорной информации с целью повышения уровня достоверности моделей, рассмотрение опти­мальных альтернатив по нескольким различным сверткам критериев.

При исследовании социотехнических систем, когда необходимо по­мимо чисто технических вопросов решать организационные и соци­альные проблемы, ситуация существенно усложняется. Учет подобно­го типа вопросов не поддается полной формализации. Следовательно, оптимизационные задачи, которые удается поставить при исследовании сложных систем, неизбежно являются заведомо приближенными, если относятся к системе в целом, либо имеют частичный, подчиненный характер, если описывают хорошо структурированные подсистемы. Ввиду этого оптимизация в системных исследованиях не конечная цель, а промежуточный этап работы. Чем сложнее система, тем осторож­нее следует относиться к ее оптимизации. При исследовании сложных систем неизбежно возникают проблемы, выходящие за пределы фор­мальных математических постановок задач. В ряде случаев, по мере необходимости обращаются к услугам экспертов, т.е. лиц, чьи сужде­ния, опыт и интуиция могут помочь в решении проблемной ситуации.

Основная идея экспертных методов состоит в том, чтобы исполь­зовать интеллект людей, их способность искать решение слабо форма­лизованных задач. При организации работы группы экспертов необхо­димо учитывать, что интеллектуальная деятельность людей во многом зависит от внешних и внутренних условий. Поэтому в методиках орга­низации экспертиз и проведении экспертных оценок специальное внима­ние уделяется созданию благоприятных условий и нейтрализации фак­торов, неблагоприятно влияющих на работу экспертов.

Важную роль в организации работы экспертов играют факторы пси­хологического характера. Прежде всего, эксперты должны быть осво­бождены от ответственности за использование результатов эксперти­зы. Дело не только в том, что лицо, принимающее решения, не должно возлагать ответственности на других, но и в том, что сама ответствен­ность накладывает психологические ограничения на характер выбора, а этого на стадии оценки альтернатив желательно избегать. Следует также принимать во внимание, что решение, принимаемое экспертом, может зависеть от межличностных отношений с другими экспертами, а также от того, известна ли его оценка другим лицам. На ход экспер­тизы могут повлиять и такие факторы, как личная заинтересованность эксперта, его необъективность, личностные качества. С другой сторо­ны, сложность проблем, решаемых в задачах системных исследований, обычно выходит за рамки возможностей одного человека. В этих усло­виях коллективная деятельность открывает дополнительные возмож­ности для взаимного стимулирования экспертов.

Поскольку взаимодействие между экспертами может как стимули­ровать, так и отрицательно сказываться на их деятельности, в разных случаях используют методики проведения экспертиз, имеющие различ­ные степень и характер взаимного влияния экспертов друг на друга. Известны следующие методы проведения экспертиз: анонимные и от­крытые опросы и анкетирование, совещания, дискуссии, деловые игры, мозговой штурм и т.п.

В последнее время с целью оказания помощи эксперту в принятии решения развиваются человеко-машинные системы, так называемые системы «искусственного интеллекта». Развитие систем такого типа идет по нескольким направлениям, а именно, разрабатываются базы знаний и экспертные системы и системы поддержки принятия решений. В системах такого типа лицу, принимающему решение, предоставляет­ся помощь в поиске наилучшего решения. Математическое и программ­ное обеспечение таких систем строится на базе набора формализован­ных процедур, которые лицо, принимающее решение, может использо­вать в любой момент и в любой степени.