Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Физика вопросы-ответы.doc
Скачиваний:
11
Добавлен:
20.04.2019
Размер:
1.94 Mб
Скачать
  1. Основные положения молекулярно кинетической теории. Молекулярно кинетический смысл давления и температуры.

Молекулярно-кинетическая теория (сокращённо МКТ) — теория XIX века, рассматривавшая строение вещества, в основном газов, с точки зрения трёх основных приближенно верных положений:

  • все тела состоят из частиц: атомов, молекул и ионов;

  • частицы находятся в непрерывном хаотическом движении (тепловом);

  • частицы взаимодействуют друг с другом путём абсолютно упругих столкновений.

Основными доказательствами этих положений считались:

  • Диффузия

  • Броуновское движение

  • Изменение агрегатных состояний вещества

В современной (теоретической) физике термин молекулярно-кинетическая теория уже не используется, хотя он встречается в учебниках по курсу общей физики. В современной физике МКТ заменила кинетическая теория, в русскоязычной литературе — физическая кинетика, и статистическая механика. В этих разделах физики изучаются не только молекулярные (атомные или ионные) системы, находящиеся не только в «тепловом» движении, и взаимодействующие не только через абсолютно упругие столкновения.

Основное уравнение мкт

, где k является постоянной Больцмана (отношение универсальной газовой постоянной R к числу Авогадро NA), i — число степеней свободы молекул (i = 3 в большинстве задач про идеальные газы, где молекулы предполагаются сферами малого радиуса, физическим аналогом которых могут служить инертные газы), а T - абсолютная температура.

Основное уравнение МКТ связывает макроскопические параметры (давлениеобъёмтемпература) газовой системы с микроскопическими (масса молекул, средняя скорость их движения).

Nam = Mr, где Mr — молярная масса газа

Отсюда окончательно

  1. Термодинамические состояния и процессы. Термодинамическое равновесие. Равновесные и неравновесные процессы.

 В большинстве термодинамических задач трёх параметров достаточно для описания состояния термодинамической системы. В этом случае изменения в системе описываются с помощью трёх термодинамических координат, связанных с соответствующими термодинамическими параметрами.

     Равновесным состоянием - состоянием термодинамического равновесия - называется такое состояния термодинамической системы, в котором отсутствуют всякие потоки (энергии, вещества, импульса и т.д.), а макроскопические параметры системы являются установившимися и не изменяются во времени.

     Классическая термодинамика утверждает, что изолированная термодинамическая система (предоставленная себе самой) стремится к состоянию термодинамического равновесия и после его достижения не может самопроизвольно из него выйти. Данное утверждение часто называю нулевым началом термодинамики.

     Системы, находящиеся в состоянии термодинамического равновесия, обладают следующими свойствами:

     Если две термодинамические системы, имеющие тепловой контакт, находятся в состоянии термодинамического равновесия, то и совокупная термодинамическая система находится в состоянии термодинамического равновесия.

     Если какая-либо термодинамическая система находится в термодинамическом равновесии с двумя другими системами, то и эти две системы находятся в термодинамическом равновесии друг с другом.

     Далее, если не будет специально оговорено, нами будут рассматриваться термодинамические системы, находящиеся в состоянии термодинамического равновесия. Описание систем, находящихся в неравновесном состоянии, то есть в состоянии, когда имеют место макроскопические потоки, занимается неравновесная термодинамика, краткое изложение основных положений которой приведено в четвертой и шестой главах.

     Переход из одного термодинамического состояния в другое называется термодинамическим процессом. Ниже, если не будет особо оговорено, будут рассматриваться только квазистатические процессы или, что то же самое, квазиравновесные процессы. Предельным случаем квазиравновесного процесса является происходящий бесконечно медленно равновесный процесс, состоящий из непрерывно следующих друг за другом состояний термодинамического равновесия. Реально такой процесс протекать не может, однако если макроскопические изменения в системе происходят достаточно медленно (за промежутки времени, значительно превышающие время установления термодинамического равновесия), появляется возможность аппроксимировать реальный процесс квазистатическим (квазиравновесным). Такая аппроксимация позволяет проводить вычисления с достаточно высокой точностью для большого класса практических задач. Равновесный процесс является обратимым, то есть таким, при котором возвращение к значениям параметров состояния, имевшим место в предыдущий момент времени, должно приводить термодинамическую систему в предыдущее состояние без каких-либо изменений в окружающих систему телах.

     Практическое применение квазиравновесных процессов в каких-либо технических устройствах малоэффективно. Так, использование в тепловой машине квазиравновесного процесса, например, происходящего при практически постоянной температуре (см. описание цикла Карно в третьей главе), неминуемо приводит к тому, что такая машина будет работать очень медленно (в пределе - бесконечно медленно) и иметь очень малую мощность. Поэтому на практике квазиравновесные процессы в технических устройствах не используются. Тем не менее, так как предсказания равновесной термодинамики для реальных систем с достаточно высокой точностью совпадают с экспериментально полученными для таких систем данными, то она широко применяется для расчета термодинамических процессов в различных технических устройствах.

     Если в ходе термодинамического процесса система возвращается в исходное состояние, то такой процесс называется круговым или циклическим. Круговые процессы, также как и любые другие термодинамические процессы, могут быть как равновесными (а следовательно - обратимыми), так и неравновесными (необратимыми). При обратимом круговом процессе после возвращения термодинамической системы в исходное состояние в окружающих ее телах не возникает никаких термодинамических возмущений, и их состояния остаются равновесными. В этом случае внешние параметры системы после осуществления циклического процесса возвращаются к своим исходным значениям. При необратимом круговом процессе после его завершения окружающие тела переходят в неравновесные состояния и внешние параметры термодинамической системы изменяются.

  1. Идеальный газ. Ур-е Менд-ва-клапейрона. Процессы в идеальном газе.

    Идеальный газ — математическая модель газа, в которой предполагается, что потенциальной энергией взаимодействия молекул можно пренебречь по сравнению с их кинетической энергией. Между молекулами не действуют силы притяжения или отталкивания, соударения частиц между собой и со стенками сосуда абсолютно упруги, а время взаимодействия между молекулами пренебрежимо мало по сравнению со средним временем между столкновениями.

    Классический идеальный газ

Свойства идеального газа на основе молекулярно-кинетических представлений определяются исходя из физической модели идеального газа, в которой приняты следующие допущения:

  • объём частицы газа равен нулю (то есть, диаметр молекулы   пренебрежимо мал по сравнению со средним расстоянием между ними, [1];

  • импульс передается только при соударениях (то есть, силы притяжения между молекулами не учитываются, а силы отталкивания возникают только при соударениях);

  • суммарная энергия частиц газа постоянна (то есть, нет передачи энергии за счет передачи тепла или излучения)

В этом случае частицы газа движутся независимо друг от друга, давление газа на стенку равно сумме импульсов в единицу времени, переданной при столкновении частиц со стенкой, энергия — сумме энергий частиц газа. Свойства идеального газа описываются уравнением Менделеева — Клапейрона

где   — давление,   — концентрация частиц  — постоянная Больцмана  — абсолютная температура.

Для любого идеального газа справедливо соотношение Майера:

где   — универсальная газовая постоянная  — молярная теплоемкость при постоянном давлении,   — молярная теплоемкость при постоянном объёме.

Изотермический процесс — термодинамический процесс, происходящий в физической системе при постоянной температуре.

Несколько изотерм для идеального газа нa p-V диаграмме

Для осуществления изотермического процесса систему обычно помещают в термостат (массивное тело, находящееся в тепловом равновесии),теплопроводность которого велика, так что теплообмен с системой происходит достаточно быстро по сравнению со скоростью протекания процесса, и, температура системы в любой момент практически не отличается от температуры термостата. Можно осуществить изотермический процесс иначе — с применением источников или стоков тепла, контролируя постоянство температуры с помощью термометров. К изотермическим процессам относятся, например, кипение жидкости или плавление твёрдого тела при постоянном давлении. Графиком изотермического процесса является изотерма.

В идеальном газе при изотермическом процессе произведение давления на объём постоянно (закон Бойля-Мариотта). Изотермы идеального газа в координатах p,V — гиперболы, расположенные на графике тем выше, чем выше температура, при которой происходит процесс (см. рисунок).

При изотермическом процессе системе, вообще говоря, сообщается определённое количество теплоты (или она отдаёт теплоту) и совершается внешняя работа. Альтернативный процесс, при котором теплообмен с окружающей средой отсутствует (термодинамическая система находится в энергетическом равновесии — система не поглощает и не выделяет тепло), называется адиабатическим процессом.

Работа, совершенная идеальным газом в изотермическом процессе, равна  , где   — число частиц газа,   — температура,   и   — объём газа в начале и конце процесса,   — постоянная Больцмана .

В твёрдом теле и большинстве жидкостей изотермические процессы очень мало изменяют объём тела, если только не происходит фазовый переход.

Первый закон термодинамики для изотермического процесса в идеальном газе записывается в виде:

    

Изохорический или изохорный процесс (от др.-греч. ίσος — «равный», и χώρος — «пространство, занятое место») — это термодинамический процесс, который происходит при постоянном объёме. Для осуществления изохорного процесса в газе или жидкости достаточно нагревать (охлаждать) вещество в сосуде, который не изменяет своего объёма.

При изохорическом процессе давление идеального газа прямо пропорционально его температуре (см. Закон Шарля). В реальных газах закон Шарля не выполняется.

На графиках изображается линиями, которые называются изохоры. Для идеального газа они являются прямыми во всех диаграммах, которые связывают параметры: T (температура), V(объем) и P (давление).

Изобарный процесс (др.-греч. ίσος, isos — «одинаковый» + άαρος, baros — «вес») — термодинамический процесс, происходящий в системе при постоянном давлении и массе идеального газа.

Согласно закону Гей-Люссака, при изобарном процессе в идеальном газе  .

Работа, совершаемая газом при расширении или сжатии газа, равна A = PΔV.

Количество теплоты, получаемое или отдаваемое газом, характеризуется изменением энтальпии: δQ = ΔI = ΔU + PΔV.

Уравнение состояния идеального газа (иногда уравнение Клапейрона или уравнение Клапейрона  Менделеева) — формула, устанавливающая зависимость между давлением, молярным объёмом и абсолютной температурой идеального газа. Уравнение имеет вид:

где

  •  — давление,

  •  — молярный объём,

  •  — универсальная газовая постоянная

  •  — абсолютная температура,К.

Так как  , где   — количество вещества, а  , где   — масса,   — молярная масса, уравнение состояния можно записать:

Эта форма записи носит имя уравнения (закона) Менделеева — Клапейрона.

В случае постоянной массы газа уравнение можно записать в виде:

Последнее уравнение называют объединённым газовым законом. Из него получаются законы Бойля — Мариотта, Шарля и Гей-Люссака:

 — закон Бойля — Мариотта.

 — Закон Гей-Люссака.

 — закон Шарля (второй закон Гей-Люссака, 1808 г.)