Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
линейн. алгебра 1.doc
Скачиваний:
10
Добавлен:
14.04.2019
Размер:
753.15 Кб
Скачать

Примеры для самостоятельного решения. Решить системы уравнений

120. 121.

122. 123.

124. 125.

126. 127.

128. 129.

130. 131.

Подобрать λ так, чтобы система уравнений имела решение

132. 133.

________________________________________________________________________________

    1. Однородные системы линейных уравнений

Система линейных уравнений (3.1) называется однородной, если все свободные члены b1=b2=…=bn=0. Однородная система всегда обладает тривиальным - нулевым решением: x1= 0, x2= 0,…, xn=0, то есть она всегда совместна.

Пусть дана однородная система трех уравнений с тремя неизвестными

Могут быть следующие случаи:

а) если определитель системы отличен от нуля, то система имеет единственное решение x1= 0, x2= 0, x3=0;

б) если определитель системы равен нулю, то система имеет бесконечное множество ненулевых решений.

________________________________________________________________________________

Найти все решения следующих однородных систем

Пример 134.

Решение. Вычислим определитель системы

Поскольку Δ≠0, то данная система имеет единственное решение, которое легко определяется по формулам Крамера. Δ123=0, отсюда x1= Δ1/Δ=0, x2= Δ2/Δ=0, x3= Δ3/Δ=0. Итак, система имеет только нулевое решение x1= 0, x2= 0, x3=0.

Пример 135.

Решение. Вычислим определитель системы

Данная система имеет бесконечное множество решений, так как ее определитель равен нулю. Будем решать систему методом Гаусса.

Второе и третье уравнения совпали, поэтому имеем систему

Полагаем x3=α, тогда из второго уравнения вычисляем x2=10α/7 и из первого определяем x1=-18α/7 (α- произвольное число).

Пример 136.

Решение. Очевидно, система имеет нулевое решение x1= 0, x2= 0, x3=0, x4=0. Исследуем по методу Гаусса данную систему

Второе и третье уравнения совпали, поэтому имеем систему двух уравнений

Полагаем x3=α, x4=β. Из из второго уравнения определяем x2=(3α/5)-(7β/5), а из первого определяем x1=(-α/5)-(6β/5), где α и β произвольные числа.

Примеры для самостоятельного решения. Найти все решения следующих однородных систем

137. 138.

139. 140.

141. 142.

143. 144.

145. При каком значении a система имеет ненулевые решения? Найти их.

а) б)

Ответы

4. 60. 5. 5. 6. 1. 7. cos(α+β). 8. sec2α. 9. -(b2+ac). 10. 4ab. 11. (b-c)(d-a). 12. 2b3. 13. -2. 14. -1. 15. -202. 16. -44. 17. -29. 18. 1. 19. b(b2-a2). 20. 2a2(a+x). 21. 1,-2. 22. . 23. 0. 24. 0, 2, -2. 25. (4,∞). 26. (-6,-4). 33. Указание. Первую строку умножить на100, а вторую на 10 и прибавить к третьей строке по свойству 8. 37. Указание. воспользоваться свойством 2, переставив местами первый и второй столбцы последнего определителя, а затем применить свойство 7. 40. Указание. Применить первое свойство, затем вынести за знак определителя множители (-1) из всех трех строк. 43. Равенство несправедливо. 44. Равенство справедливо. Указание. Применить свойство 7 по столбцам. 45. 46. Δ. 47. Да. 48. а) -20, б) 18, в) -4. 49. -31 50. 180. 51. 87. 52. 0. 53. 72. 54. (y-x)(z-x)(z-y). 57. 12. 58. 180. 59. 48. 60. 1. 61. Нет. 64. . 65. . 66. . 67. . 71. 72. 73. 74. (13). 75. 76. . 77. 78. 81. 85. 86. 87. 88. 89. 90. 91. 92. 93. 94. 95. 96. 97. В матрице A-1 поменяются местами соответствующие столбцы и перед матрицей появится множитель (-1). 100. (3,-1). 101. (3,-1). 102. (-2,-1). 103. (-2,-1). 104. (1,1,1). 105. (2,3,1). 106. (3,1,1). 107. (-1,-1,0,1). 110. (2,-5). 111. (2,-5). 112. (3,1,1). 113. (3,1,1). 114. (2,1,3). 115. (1,2,-5). 120. (1,2,-2). 121. Система имеет бесчисленное множество решений: x1=1, x2=-2(1+α), x3= α, где α-любое произвольное число. 122. Система решений не имеет. 123. Система имеет бесчисленное множество решений: x1=-3-2α, x2=4+α, x3= α. 124. Система решений не имеет. 125. (1,2,-2). 126. (3,4,5). 127. Система имеет бесчисленное множество решений: x1=2α-β, x2=α, x3= β, x4=1, где α и β - произвольные числа. 128. Система решений не имеет.

129. (1,2,-2). 130. (1,2,1). 131. Система имеет бесчисленное множество решений: x1=(-11α)/7, x2=-α/7, x3= α. 132. 5. 133. -6. 137. (0,0,0). 138. x1=-4α, x2=-α, x3= 5α, где α- произвольное число. 139. x1=2α-3β, x2=α, x3= β. 140. x1=-3α, x2=10α/7, x3= α. 141. (0,0,0). 142. (0,0,0). 143. Система имеет бесчисленное множество решений: x1=-α+7β/6, x2=α+5β/6, x3= α, x4= β/3, x5= β. 144. Система имеет бесчисленное множество решений: x1=α, x2=-2α, x3= α. 145. а) При a=0: x1=α, x2=0, x3= 0; при a=2: x1=5α, x2=-8α, x3= 2α; б) при a=0: x1=α x2=α, x3= α.

________________________________________________________________________________

21