Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Методичка по общей химии.doc
Скачиваний:
15
Добавлен:
07.12.2018
Размер:
371.71 Кб
Скачать

Контрольные вопросы

1 Что такое комплексообразователь, лиганд, внутренняя и внешняя сфера комплексного соединения?

2 Как определяется степень окисления и координационное число комплексообразователя?

3 Как классифицируются комплексы по характеру заряда и природе лигандов?

4 Как составляются название комплексных соединений?

5 Даны комплексные соединения:

K2[ZnCl4], [Zn (OH2 )4]Cl2, K2[Zn(OH)4], [Ni (NH3)6]Cl2, [Pt(NH3)4Cl2] [Cr(NH3)3 (ОН2)3]Cl3, K3[FeF6].

а) отметьте внутреннюю и внешнюю сферу комплексных соединений, комплексообразователь и лиганды;

б) определите заряд комплексного иона, степень окисления и координационное число комплексообразователя;

в) какие из соединений содержат катионный комплекс, какие – анионный и какие комплексы электронейтральны;

г) приведите названия соединений.

6 Что характеризует константа нестойкости комплексного соединения? Напишите выражение константы нестойкости для комплексного соединения К4[Fe(СN)6]. Как можно сместить равновесие диссоциации комплексного иона в правую сторону? Каковы последствия этого смещения?

7 Какова природа химической связи во внутренней сфере комплексного соединения?

8 Как можно по числу свободных валентных орбиталей комплексообразователя определить его координационное число и возможный тип гибридизации валентных орбиталей?

1.5 Коррозия металлов

Коррозия, т.е. самопроизвольное разрушение металлов и сплавов в результате химического или электрохимического взаимодействия металлов со средой, относится к гетерогенным процессам. Различают газовую и электрохимическую коррозию. Газовая коррозия – коррозия металлов при высокой температуре газов. Важным фактором, определяющим скорость газовой коррозии (разрушение металла на единице поверхности в единицу времени), является сплошность образующихся пленок. При соотношении пленки сплошные, а при пленки могут быть сплошными и тормозить процесс коррозии.

Защита от газовой коррозии осуществляется легированием элементами, способствующими образованию пленок с высокими защитными свойствами, покрытиями и т.п.

При электрохимической коррозии на поверхности металлов и сплавов протекают одновременно два процесса: анодный – процесс окисления металлов:

Ме = Меn+ + ne-

и катодный – процесс восстановления ионов водорода:

+ + 2е- = Н2

или восстановления молекул кислорода, растворенного в электролите:

О2 + 2Н2О + 4е- = 4ОН-

Ионы или молекулы, которые восстанавливаются при протекании катодного процесса, называются деполяризаторами. В зависимости от характера катодного процесса различают коррозию с водородной и кислородной деполяризацией.

Электрохимическая коррозия может протекать только в том случае, когда равновесный электродный потенциал катодной реакции больше равновесного электродного потенциала анодной реакции.

На технических сплавах катодный и анодный процессы могут протекать раздельно на разных участках поверхности. Участки с более отрицательным потенциалом называются анодными, на них протекает анодный процесс, а участки с более положительным потенциалом – катодными, на них протекают катодные процессы. Катодные и анодные участки образуют коррозионные гальванические элементы, работа которых во многих случаях определяет скорость и характер коррозии.

Возникновение коррозионных гальванических элементов в большинстве случаев объясняется структурной неоднородностью (гетерогенностью) сплавов. Так, например, в углеродистых сталях роль катодных участков выполняет карбид железа – цементит, а роль анодных участков – остальная поверхность стали. Коррозионные элементы образуются также при контакте металлов с различными потенциалами. В этих случаях металл с более отрицательным потенциалом разрушается (работает анодом), а на металле с более положительным потенциалом протекает катодный процесс.

Образующиеся при коррозии с кислородной деполяризацией трудно растворимые гидроксиды металлов уменьшают скорость коррозии. Изменение рН среды может приводить к растворению пленки гидроксидов, в результате чего скорость коррозии увеличивается. Так, например, при коррозии цинка образуется Zn(OH)2, который обладает амфотерными свойствами – растворяется в кислой и щелочной среде. Поэтому скорость коррозии цинка увеличивается как при уменьшении, так и при увеличении рН.

Для защиты от электрической коррозии применяются металлические и неметаллические покрытия, протекторная и катодная защита внешним током. Металлические покрытия в зависимости от соотношения электродных потенциалов покрытия и основного металла разделяются на анодные, когда потенциал покрытия более отрицательный, чем основного металла, и катодные, электродный потенциал которых более положительный.

При нарушении анодного покрытия, например, цинкового покрытия на стали, образуется пара Fe-Zn, в которой цинк работает анодом, а железо катодом и не разрушается. При нарушении катодного покрытия, например медного покрытия на стали, образуется пара Fe-Cu, в которой железо работает анодом и разрушается. Протекторная защита состоит в том, что к защищаемой детали, работающей в воде или почве, присоединяется металл с более отрицательным электродным потенциалом (протектор), в результате чего в паре железо-протектор железо работает катодом и не корродирует. При катодной защите внешним током защищаемая деталь присоединяется к катоду внешнего источника тока, а к аноду – дополнительный электрод. При этом защищаемая деталь работает катодом и не корродирует.