Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Фейнман - 3. Излучение. Волны. Кванты.docx
Скачиваний:
14
Добавлен:
12.11.2018
Размер:
1.84 Mб
Скачать

§ 4. Увеличение

До сих пор мы рассматривали процесс фокусировки только для точек, лежащих на оси. Построим теперь изображение объектов, несколько смещенных в сторону от оси; это поможет нам понять явление увеличения. Если с помощью линзы сфокусировать свет от небольшой нити на экран, то мы увидим изображение той же нити, только несколько большего или мень­шего размера по сравнению с настоящей. Отсюда мы заключаем, что свет попадает в фокус от каждой точки нити. Чтобы получше в этом разобраться, рассмотрим линзу, схематически изображенную на фиг. 27.7. Нам известно, следующее:

1) каждый луч, параллельный оси, фокусируется по другую сторону линзы в точке, называемой фокусом и располо­женной на расстоянии f от линзы;

2) каждый луч, приходящий из фокуса по одну сторону лин­зы, выходит с другой стороны параллельно оси.

Фиг. 27.7. Геометрическое по­строение изображения от тонкой линзы.

С помощью только этих фактов мы докажем формулу (27.12) геометрическим путем. Пусть объект находится на расстоянии x от фокуса и его высота есть у. Мы знаем, что луч PQ отклоняет­ся и пройдет через фокус R по другую сторону линзы. Если свет от точки Р фокусируется линзой, достаточно определить путь еще одного луча, и тогда фокус будет расположен в точке пере­сечения двух лучей. Нужно только умело выбрать направление второго луча. Вспомним, что параллельный луч проходит через фокус, и наоборот: луч, проходящий через фокус, выходит па­раллельно оси! Поэтому проведем луч РТ через U. (Правда, фокусируемые лучи могут быть гораздо тоньше, чем начерченные нами, но их труднее изобразить, поэтому оставим нашу прежнюю схему.) Поскольку луч параллелен оси, проведем TS параллель­но XW. Пересечение S и есть искомая точка. Отсюда мы полу­чаем нужную высоту и правильное расстояние. Обозначим вы­соту через y', а расстояние до фокуса через x'. Теперь можно вы­вести формулу для линзы. Из подобных треугольников PVU и TXU находим

(27.13)

Из треугольников SWR и QXR получаем

(27.14)

Разрешая оба равенства относительно y'y, находим

(27.15)

Оно гораздо изящнее формулы (27.12). Мы рекомендуем чита­телю доказать, что при s=x+f и s' =x'+f равенства (27.12) и (27.16) совпадают.

§ 5. Сложные линзы

Опишем кратко без вывода основные свойства системы линз. Как исследуют систему нескольких линз? Очень просто. Начнем с некоторого объекта и определим его изображение, даваемое первой линзой, пользуясь формулами (27.16), (27.12) или любой эквивалентной формулой или, наконец, изобразив все это графи­чески. Итак, мы получим первое изображение. Затем мы будем рассматривать это изображение как источник для следующей линзы и, чтобы найти новое изображение, воспользуемся второй линзой с любой заданной фокусной длиной. Проделаем такую процедуру последовательно для всей системы линз. Вот и все. В принципе здесь нет ничего нового, поэтому мы не будем вхо­дить в подробности. Однако очень интересный результат полу­чается, когда свет входит и выходит из системы линз в одну и ту же среду, например в воздух. Любое оптическое устройство — будь то телескоп или микроскоп с произвольным количеством линз и зеркал — обладает следующим интересным свойством. Имеются две плоскости, называемые главными плоскостями системы (часто они расположены поблизости от внешних поверх­ностей первой и последней линзы), которые обладают следую­щими свойствами: 1) свет, входящий параллельным пучком с одной стороны, собирается с другой стороны в фокус, отстоящий от второй главной плоскости на фокусное расстояние (как будто вместо системы имеется тонкая линза, совпадающая со второй главной плоскостью); 2) свет, входящий параллельным пучком с другой стороны, собирается в фокус на расстоянии / от первой главной плоскости, как будто там опять-таки находится тонкая линза (фиг. 27.8).

Само собой разумеется, если определить, как и раньше, рас­стояние х, х' и у, у', то формула (27.16) для тонкой линзы будет применима и в этом общем случае, только фокусные расстояния нужно отсчитывать от главных плоскостей, а не от центра линзы. Для тонкой линзы главные плоскости совпадают. Получается так, как если бы мы взяли тонкую линзу, разрезали её на дольки и разнесли их на некоторое расстояние, а в результате ничего не изменилось. Каждый входящий луч немедленно выскакивает по другую сторону от второй плоскости! Главные плоскости и фокусные расстояния находят либо вычислением, либо опытным путем; этим исчерпывается описание свойств оптической системы.

Фиг. 27.8. Главные плоскости оптической системы.

Весьма интересно, что результат для большой и сложной оптической системы оказался таким простым,