- •Общая организация митотических хромосом
- •Часть I. Введение. Предмет клеточной биологии
- •Глава 1. Клеточная теория
- •1. Клетка – элементарная единица живого
- •2. Клетка – единая система сопряженных функциональных единиц
- •3. Гомологичность клеток
- •4. Клетка от клетки
- •5. Клетки и многоклеточный организм
- •6. Тотипотентность клеток
- •Глава 2. Методы клеточной биологии
- •Световая микроскопия
- •Витальное (прижизненное) изучение клеток
- •Изучение фиксированных клеток
- •Электронная микроскопия
- •Контрастирование корпускулярных объектов
- •Ультрамикротомия
- •Фракционирование клеток
- •Часть II. Строение и химия клеточного ядра Глава 3. Центральная догма молекулярной биологии
- •Глава 4. Морфология ядерных структур Роль ядерных структур в жизнедеятельности клетки
- •Ядерные компоненты прокариот
- •Ядро эукариотических клеток
- •Эухроматин и гетерохроматин
- •Хромосомный цикл
- •Общая морфология митотических хромосом
- •Клеточный цикл эукариот
- •Эндорепродукция и полиплоидия
- •Глава 5. Структура и химия хроматина
- •Основные белки хроматина - гистоны
- •Нуклеосомы при репликации и транскрипции
- •Второй уровень компактизациии – 30 нм фибрилла
- •Негистоновые белки
- •Глава 6. Ядерный белковый матрикс Общий состав ядерного матрикса
- •Днк ядерного белкового матрикса
- •Четвертый – хромонемный уровень упаковки хроматина
- •Глава 7. Общая организация митотических хромосом
- •Часть III
- •Глава 8. Ядрышко – источник рибосом
- •Ядрышко во время митоза: периферический хромосомный материал
- •Глава 9. Нерибосомные продукты клеточного ядра Транскрипция нерибосмных генов
- •Морфология рнп-компонентов в ядре
- •Глава 10. Ядерная оболочка
- •Часть IV. Цитоплазма
- •Глава 11. Гиалоплазма и органеллы
- •Глава 12. Общие свойства биологических мембран
- •Глава 13. Плазматическая мембрана
- •Клеточная стенка (оболочка) растений
- •Глава 14. Вакуолярная система внутриклеточного транспорта
- •Глава 15. Аппарат (комплекс) Гольджи
- •Глава 16. Лизосомы
- •Глава 17. Гладкий ретикулум и другие мембранные вакуоли
- •Часть V. Цитоплазма: системы энергообеспечения клеток
- •Глава 18. Митохондрии – строение и функции
- •Глава 19. Пластиды
- •Часть VI. Цитоплазма: Опорно-двигательная система (цитоскелет)
- •Глава 20. Промежуточные филаменты
- •Глава 21.Микрофиламенты
- •Глава 21. Микротрубочки
- •Глава 23. Клеточный центр
- •Двигательный аппарат бактерий
- •Часть VII. Механизмы клеточного деления. Глава 24. Митотическое деление клеток. Общая организация митоза
- •Различные типы митоза эукариот
- •Центромеры и кинетохоры
- •Длительность фаз митоза
- •Глава 25. Мейоз
- •Глава 26. Регуляция клеточного цикла
- •Фактор стимуляции митоза
- •Циклины
- •Регуляция клеточного цикла у млекопитающих
- •Глава 27. Гибель клеток: некроз и апоптоз
- •Апоптоз
2. Клетка – единая система сопряженных функциональных единиц
В начале нашего изложения в согласии с клеточной теорией мы обсуждали первый ее постулат: клетка – наименьшая единица живого. Однако мы знаем о сложности строения этой «единицы», которая состоит, содержит в себе множество типов внутриклеточных структур, выполняющих разнообразные функции. При этом каждый компонент «специализирован» на выполнение одной собственной группы функций, и другие компоненты не могут работать «по совместительству», не могут принять на себя основные функции других внутриклеточных структур. Важно отметить, что каждая из функций является обязательной, без выполнения которой клетка не может существовать. Все это в значительной степени напоминает многоклеточный организм, который также является особой живой системой, обеспечивающей свое собственное существование и воспроизведение. Все тело организма может быть подразделено на ряд подсистем или систем, обеспечивающих отправление целого ряда организменных функций: пищеварительная, выделительная, мышечная, нервная, половая система и др. И эти функции выполняются отдельными или рядом органов: кишечник, почки, мозг и т.д. И в данном примере эти системы в основном монофункциональны и незаменимы. В общей системе организма как целого, все они играют главные, а не подчиненные роли. Жизнь организма становится невозможной при выключении любой из этих систем.
Формально любую клетку можно «разложить» на ряд как бы независимых структурных и функциональных компонентов, выполняющих свои специфические функции. Так, например, эукариотические клетки принято разделять на ядра и цитоплазму. В цитоплазме, в свою очередь выделяют гиалоплазму или основную плазму клетки (цитозоль – растворимый компонент цитоплазмы по терминологии биохимиков), а также целый ряд структур – органелл, выполняющих свои отдельные специфические функции. Это мембранные органеллы: одномембранные (вакуолярная система, включающая в себя эндоплазматический ретикулум, аппарат Гольджи, эндо- и экзоцитозные вакуоли, лизосомы, пероксисомы) и двумембранные (митохондрии и пластиды). К немембранным органеллам нужно отнести рибосомы и систему цитоскелетных фибрилл. Кроме того вся поверхность клетки покрыта цитоплазматической мембраной, тесно функционально связанной как с вакуолярной системой, с элементами цитоскелета, так и с гиалоплазмой.
Но каждая из этих морфологических «отдельностей» представляет собой новую систему или подсистему функционирования. Так клеточное ядро является системой хранения, воспроизведения и реализации генетической информации. Гиалоплазма – система основного промежуточного обмена; рибосомы – элементарные клеточные машины синтеза белка; цитоскелет – опорно-двигательная система клетка; вакуолярная система – система синтеза и внутриклеточного транспорта белковых биополимеров и генезиса многих клеточных мембран; митохондрии – органеллы энергообеспечения клетки за счет синтеза АТФ, пластиды растительных клеток – система синтеза АТФ и фотосинтеза, плазматическая мембрана – барьерно-рецепторно-транспортная система клетки.
Аналоги этих систем есть и у прокариот: это – плазматическая мембрана, которая кроме пограничной роли участвует в процессах синтеза АТФ и фотосинтеза, цитозоль, рибосомы, и даже элементы цитоскелета.
Важно подчеркнуть, что все эти подсистемы клетки образуют некое сопряженное единство, находятся во взаимозависимости. Так, например, нарушение функций ядра сразу сказывается на синтезе клеточных белков, нарушение работы митохондрий прекращает все синтетические и обменные процессы в клетке, разрушение элементов цитоскелета прекращает внутриклеточный транспорт и т.д. Как в часовом механизме повреждение любой его части приводит к остановке всей системы в целом.