Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Хакен - тайны природы

.pdf
Скачиваний:
68
Добавлен:
04.06.2015
Размер:
3.65 Mб
Скачать

КАК ВЫЖИТЬ, НЕ БУДУЧИ СИЛЬНЕЙШИМ?

101

ное происходит и в политической, и в экономической жизни. Относительно параметра порядка возможны предположения общего характера, но нельзя сделать никаких предсказаний, касающихся отдельных индивидуумов — к этому факту мы еще неоднократно вернемся в дальнейшем.

ГЛАВА 9

ФОРМИРОВАНИЕ БИОЛОГИЧЕСКИХ ОРГАНИЗМОВ

Передача наследственной информации

В предыдущей главе мы занимались живой природой в целом и динамикой взаимодействия различных живых организмов; теперь же мы обратимся к живому организму как таковому. Живая природа поражает нас многообразием форм, но отдельные биологические виды отличаются постоянством формы, воспроизводя ее снова и снова в неизменном виде. Это значит, что возникновение формы должно быть подчинено строгим правилам. Но каким, собственно, образом вообще возникает форма, и как становится возможным упорядочивание этого возникновения? Простейшим ответом на эти вопросы будет ссылка на наследственность. Ведь нам прекрасно известно, что телесные — и, несомненно, духовные — свойства и качества передаются по наследству, а значит, должен существовать какой-то материальный носитель этих свойств, какое-то химическое вещество. Химики наградили этот носитель сложным именем «дезоксирибонуклеиновая кислота», сокращаемым обычно до ДНК. Молекула ДНК представляет собой две молекулярные цепочки, закрученные одна вокруг другой в спираль, за что и называется иногда двойной спиралью (рис. 9.1). В каждой цепочке, как в нитке бус, состоящей из разноцветных жемчужин, выстроены друг за другом в порядке, кажущемся совершенно произвольным, химические соединения четырех различных типов (рис. 9.2). Полные названия этих четырех соединений большинству из нас мало что скажут; здесь мы назовем их по первым буквам их кратких названий: А (аденин), Ц (цитозин), Г (гуанин) и Т (тимин). (Сами названия нам больше не понадобятся, поэтому запоминать их не обязательно.) Для усиления аналогии с цветными бусами присвоим каждому типу соединений определенный цвет.

ГП-РЕДЛЧЛ НЛСЛЕ-ДСТВКННОЙ ИНФОРМАЦИИ

103

Рис. 9.1. Образующие двойную спираль молекулярные цепочки ДНК.Вверху схематически показан продольный разрез, внизу —объемная модель

Молекула ДНК «воспроизводится» в клетке подобно тому, как на фотографии воспроизводится негатив. При этом посредством определенной химической реакции возникает молекула рибонуклеиновой кислоты (РНК). Каждый отдельный элемент ДНК (А, Ц, Г или Т) переходит при этом в соединение нового типа:

Рис. 9.2. В каждой цепочке элементы молекулы следуют друг за другом, подобно жемчужинам в бусах

ДНК

РНК

А

У(урацил)

ц

Г

 

г

Ц

т

А

 

Элементы молекулярной цепочки группируются по три, например: ГАУ, ЦЦУ, ГЦУ, УУУ.

Последовательность элементов в группах представляет собой своего рода код, определяющий порядок выстраивания в молекуле белка отдельных аминокислот (рис. 9.3).

104 ГЛАВА 9

Г Г У А У Ц Г Г У Г А А Н А

Рис. 9.3. Кодоны, или триплеты молекулыРНК

Наличие в определенной цепочке РНК последовательности, допустим, ГАУ-ЦЦУ-ГЦУ-УУУ является своего рода письменным приказом для клетки, звучащим приблизительно так: «строй белок (протеин), и на первое место поставь аминокислоту аспарагин, на второе — аланин и т. д.» Таким образом, РНК руководит внутриклеточным синтезом, множество интереснейших подробностей которого нам приходится опустить —слишком далеко уведут они нас от главной темы этой книги. Каждый триплет из оснований А, Ц, Г и У представляет собой отдельную единицу информации, некое кодовое слово, или кодон. Молекулы ДНК и РНК содержат (в зависимости от того, о каком биологическом организме идет речь) от нескольких десятков до многих миллионов таких кодонов: ими можно заполнить не только целую страницу (рис. 9.4), но и целую книгу (запись ДНК человека). Напрашивается идея о том, что с помощью ДНК от организма к организму передается некое руководство к действию (или даже что-то вроде строительного плана). Или, используя другую метафору, ДНК — это магнитная лента, которая сохраняет и впоследствии воспроизводит какую-либо мелодию.

При ближайшем рассмотрении подобного представления о наследственности вновь возникают определенные проблемы. Составляя действительный строительный план, невозможно обойтись без огромного количества разнообразных инструкций и предписаний. К примеру, в них должно быть точно указано, где именно в развивающемся организме положено находиться каждой клетке и какими именно характеристиками каждая из этих клеток должна быть наделена. А теперь попытайтесь мысленно представить, какое количество подобных предписаний — или, как выражаются специалисты, какой объем информации — необходимо иметь для того, чтобы «выстроить» живой организм: очень скоро вы доберетесь до числа, соответствующего такому количеству информации, которое не способна в себя вместить никакая молекула ДНК. Возвращаясь к сравнению ДНК с книгой, можно сказать, что для «строительства», например, человека потребовалась бы колоссальная библиотека. Следовательно, Природа должна была разработать методы, позволявшие реализовать «планы» любой сложности, обходясь при этом куда меньшими объемами информации.Должен, очевид-

ПЕРЕДАЧА НАСЛЕДСТВЕННОЙ ИНФОРМАЦИИ

105

тПНА START ( ^ .

к START

 

I • REGION ОТ 0ПЮ1Н Of ON* REPLICA

ААЛАСООТТЖСОСАОТТГТОССОСАЛОСТООСТОСТОААСОСССТСТТАЛ

САаостсАтостаАТооттоатАтсотттоАСАстстсАссгтоостаАсоАСсаАттАаАоосаттттАтОАТА*1Ссся*тос1

TAATCCAACTTACCAAGCTCaCTTACCACGCaACGCCCTTCAACCAGATATTG*ACCAGAAC0CAAAAAO«QAO

r*CTACTGCrrGTTTACGAATTAAATCCAACTGGACTCCTCCCMfa»lffSfcA<

AAQAOCOTOCATTACTATCTGAGTCCGATGCTGTTCAACCACTAAT^HiAAGAAATC^^SGTC

CCAQACCOCTTTOQCCTCTATTAAOCTCATTCAGGCTTCTGCCGTTTTGGATTTAACCGAAtiATGJ

AQ гттаоА тт oc t АС то АС сое т с т со т ас ice f се с TGC G n M N с ттос GT TI^T^G TАСС С

сдстадсотт стт АС тадсосда АА аллдд с а т осоте ААА »АТТ *сотос оаШ^м^айгсР^гдтст АААО CTAAAAAACOIT

ООСвСТСОСССТООТСОТССОС AOCCOtTOCOAQeiAC^AAAaOCAAOCOTAAAOOCOCTCOtCTTTOOTATGT АввТОО ТС А АСА Al

GAOOGTCACTGGTATCGTTATuCGCCTTCGTATGTTTCTCCTGCTTATCACCTTCTTGAAGGCTrCCCATTCATfCAGOAACCGCCT

GGTGATTTGCAAGAACGCGTACTTATTCGCAACCATtiATTATtiACCAGTGTTTCAtiTCGTTCAGTTGTTGCAGTGGATAGTCTTACC

FEND

TCTGACGTTTATCGCAATCTGCCC«CCACTCGCG*TTCimrC«TGACTTCdrG<h*AAAaA>TGAQTGTGACOTTI>Tl>ACCOAAGCGi

Рис. 9.4. Пример последовательности оснований в молекуле ДНК вируса

106

ГЛАВА 9

но, существовать некий закон, согласно которому из имеющейся структуры ДНК развивается соответствующий организм.

Возвращаясь к вышеприведенной аналогии, можно сказать, что если молекула ДНК — это магнитная лента, предназначенная для сохранения и воспроизведения определенных сигналов, то должно наличествовать что-то, что выполняло бы функции собственно магнитофона, преобразующего эти сигналы в мелодию с одним, правда, существенным отличием: все указывает на то, что Природа преобразует сигналы ДНК немыслимо хитроумным способом, «диктуя» в некотором смысле только музыкальную тему и предоставляя детальную разработку этой темы «магнитофону», т. е. развивающемуся организму. В этом свете высказанное выше положение о содержании в ДНК совершенно определенной информации начинает выглядеть несколько сомнительным. Содержание ДНК определяется окружающей средой, в которой молекулам ДНК(илиРНК) приходится «воспроизводить» свою тему. Возьмем для примера крайний случай: если поместить ДНК или РНК в кучу сахарного песка, то не произойдет ровным счетом ничего. Зато некоторые молекулы этих веществ уже могут «поработить», подчинить себе определенные бактерии, принудив их производить инсулин.

Образование биологических форм

Прежде чем заняться этим вопросом вплотную, обратимся к экспериментам, которые помогут нам разобраться в механизмах образования форм организмов (и отдельных органов). Для таких целей в биологии — так же, как и в других науках — обычно применяется какая-либо «модельная система», отличающаяся относительной простотой и потому удобная для изучения. Наибольшую известность приобрели две таких модельных системы: миксомицеты и гидры.

Миксомицеты (или слизевики) — грибообразные организмы, обитающие в верхних слоях почвы и в обычном состоянии представляющие собой скопление клеток, сходных по форме с амебами. Если питание отдельных клеток оскудевает, то происходит следующее: клетки — словно повинуясь тайному приказу — внезапно скапливаются в одном месте и образуют так называемые ножку и спороноситель (рис. 9.5). Впрочем, миксомицеты и после этого остаются способны к передвижению, которое напоминает движение змей (рис. 9.6). Уже первая фаза — сосредоточение в одном месте — в высшей степени интересна. Откуда отдельным клеткам становится из-

ОБРАЗОВАНИИ БИОЛОГИЧЕСКИХ ФОРМ

107

Рис. 9.5. Здесь схематично представлены «стадии» развития миксомицега от отдельных клеток-амеб до образования гриба

Рис. 9.6. Миксомицеты, илислизевики

всстно место сбора? Каким образом они вообще узнают о том, что должны где-то собраться? Биологи обнаружили, что клетки способны производить особую субстанцию — так называемый циклический аденозинмонофоефат, или ц-АМФ, — и обмениваться ею. Как только клетка получает от одной из соседних клеток порцию ц-АМФ, она усиливает и собственное выделение этого вещества; взаимодействие такого эффекта усиления и диффузии порождает структуру, аналогичную химическим волнам или спиралям (рис. 9.7). Отдельные клетки способны «регистрировать» градиент плотности возникающих в процессе волн ц-АМФ и движутся в направлении,

108

Гллвл9

Рис. 9.7. Спиралевидные волны п-АМФ

противоположном направлению распространения этих волн. Для передвижения клетки используют крошечные псевдоподии.

Приведенный пример наглядно показывает, что образование таких структур, как спирали или концентрические круги, может совершенно аналогично протекать как в неживой (в ходе химических реакций), так и в живой природе. Фундаментальная причина этого сходства заключается в том, что в основе подобных процессов лежат всегда одни и те же закономерности изменения параметра порядка, определяющие макроскопическое поведение наблюдаемых структур.

После того как отдельные — причем совершенно одинаковые — клетки соберутся в одном месте, начинается новый процесс, легко поддающийся наблюдению; причины происходящего, однако, еще не до конца ясны. Клст-

ОБРАЗОВАНИЕ БИОЛОГИЧЕСКИХФОРМ

109

ки скапливаются в одном месте, при этом происходит их дифференциация: часть скопления преобразуется в ножку гриба, остальные же становятся его шляпкой. Возможно, ц-АМФ играет решающую роль и в процессе дифференциации клеток; впрочем, соответствующие исследования еще не завершены. Все же приведенный пример дает весьма наглядное представление о том, каким образом отдельные клетки «договариваются» между собой при помощи особого химического вещества. Этот результат пригодится нам в дальнейшем, когда мы займемся непосредственно образованием структур.

Пожалуй, наиболее широко известным примером модельной системы в биологии может служить гидра. Речь идет о пресноводном полипе размером всего в несколько миллиметров; среди нескольких сотен тысяч клеток, из которых состоит гидра, можно выделить чуть больше дюжины типов. У гидры имеется подошва и голова (т. е. противоположный подошве конец, на котором расположено ротовое отверстие). Интересует нас прежде всего следующий вопрос: откуда недифференцированные изначально группы клеток узнают, где должно быть образовано ротовое отверстие, а где —по- дошва? В духе обсуждавшейся ранее идеи о существующем заранее «строительном плане» можно предположить, что каждая клетка к началу «строительства» оказывается уже проинструктирована насчет того, чем именно ей предстоит стать.

\ /

\ /

голова \ /

\ /

подошва

Рис. 9.8. Регенерация гидры. Слева схематично изображено нетронутое тело гидры, в середине —рассеченное на две половины, а справа —уже две новые гидры, и у каждой из них имеется и ротовое отверстие, и подошва

по

Гллвл9

Гидру можно использовать для проведения очень интересного эксперимента (рис. 9.8). Разрезав гидру посередине, мы получим две новые гидры: недостающая часть каждой половины быстро регенерируется. Это означает, что совершенно одинаковые клетки могут развиться в абсолютно различные органы, т. е. клетки должны каким-то образом получить инструкции, которые определят их местоположение и укажут назначение. Другими словами, клетки должны суметь сохранить информацию о своем положении. О задействованных в этом механизмах дают представление следующие эксперименты.

Головную часть одной гидры пересаживают в среднюю часть другой гидры. Если пересаженная часть оказывается близко к голове гидрыреципиента, то рост новой головы подавляется, если же удаление это достаточно велико, то из пересаженной части образуется совершенно новая голова. Очевидно, клетки каким-то образом сообщаются между собой в том смысле, что существующая голова оказывается способна позаботиться о том, чтобы рядом с ней не выросла вторая.

Микроскопические структуры на молекулярной основе

На примере миксомицетов мы увидели, что сообщение между отдельными клетками на расстоянии может осуществляться благодаря диффузии химических веществ. Модели же для объяснения процесса дифференцирования клеток были предложены математиками (в частности, Аланом М. Тьюрингом) еще раньше. Чтобы разобраться в этом вопросе, рассмотрим

Рис. 9.10. Теперь клетки с рис. 9.9 сообщаются друг с другом, благодаря чему между ними стал возможен обмен веществом. Такой обмен в совокупности с протекающими в каждой клетке процессами приводит к неравномерному распределению концентрации вещества. Даны оба случая нарушения симметрии, соответствующие двум возможным положениям шарика на синсргстичсской кривой