Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Хакен - тайны природы

.pdf
Скачиваний:
68
Добавлен:
04.06.2015
Размер:
3.65 Mб
Скачать

ГЛАВА 16

О ГАЛЛЮЦИНАЦИЯХ И ТЕОРИЯХ ДЕЯТЕЛЬНОСТИ МОЗГА

Наисложнейшей и в то же время самой удивительной из всех систем, предоставленных в наше распоряжение Природой, является, пожалуй, человеческий мозг. При вскрытии черепной коробки хирург видит перед собой кажущуюся однородной серую массу, пронизанную тончайшими нитями; в действительности же все это — невообразимой сложности сеть, состоящая из нервных клеток.

Во второй половине девятнадцатого века итальянцу Камилло Гольджи удалось окрасить отдельные нервные клетки, сделав их тем самым видимыми. Некоторые из сотен клеток, впитав красящее вещество, приобретали вследствие этого ржаво-красный цвет. На рис. 16.1 представлена схема нервного узла с многочисленными разветвлениями, называемыми за их форму дендритами. Разумеется, для того, чтобы разглядеть реальную клетку, необходим микроскоп: диаметр нервных клеток, или нейронов, составляет всего лишь тысячные доли миллиметра. Человеческий мозг состоит приблизительно из ста миллиардов нейронов; это число сопоставимо с количеством звезд во всем Млечном Пути. Наряду с нейронами в мозге существуют еще и так называемые клетки глии, обеспечивающие нейронам опору, защиту и питание. (Согласно новейшим исследованиям, нейроглии способны также выполнять функции нервов, однако об этом известно пока еще очень мало.) Нервные клетки часто упорядочены в слои; некоторые исследователи считают, что внутри таких слоев и даже между ними существуют колончатые структуры, в которых особым образом «соединенные» клетки образуют некие функциональные единства.

Когда речь идет о «соединении», имеется в виду множество связей между нейронами, пронизывающих мозг, подобно телефонным кабелям или проводам — некоторые из таких кабелей связывают соседние клетки, другие же тянутся дальше, подобно кабелям трансокеанской связи, и служат

222

Гллвл 16

Рис. 16.1. Нервная клетка

Рис. 16.2. Скопление нервных клеток

для соединения отдаленных друг от друга отделов мозга (рис. 16.2), выполняя функции своего рода телефонной сети и точно так же перенося электрические сигналы. Правда, при этом применяется код, принципиально отличный от азбуки Морзе. Если азбука Морзе основана на чередовании точек и тире, то код, используемый нейронами, включает в себя одни только точки. Для обеспечения передачи информации столь скудными средствами Природа распорядилась так, что «точки» могут выстраиваться в последовательности, передаваемые с различной скоростью. Нейроны же, по всей видимости, способны обрабатывать «входящие» сигналы и передавать их дальше, другим нейронам.

В ходе экспериментов в нейроны вводились тончайшие электроды, при помощи которых ученые могли исследовать электрические процессы, протекающие в отдельных нервных клетках.

«Бабушкины клетки»

В объяснении мыслительных процессов наука пока продвинулась не слишком далеко, но все же было проведено несколько интересных экспериментов, позволяющих сделать выводы о принципах действия по меньшей

«БАБУШКИНЫ КЛЕТКИ»

223

мере нескольких отдельных клеток или даже целых областей головного мозга. Так, например, Дэвид Хьюбел и Торстен Визел проводили опыты с шимпанзе, во время которых животным предлагались подвижные и неподвижные объекты в виде световых полос. Через глаза сигнал передавался

вмозг шимпанзе, где и попадал в определенную зону, отвечающую за зрительное восприятие. В эту зону исследователями были введены электроды, с помощью которых изучались реакции отдельных нервных клеток на предъявляемые подопытному животному объекты. В ходе эксперимента было сделано удивительное открытие: ученые установили, что каждый раз на определенные внешние раздражители реагируют совершенно определенные клетки. К примеру, существуют клетки, реагирующие не только на саму полосу, но и на пространственную ориентацию этой полосы. Это означает, что, когда шимпанзе показывают полосу, расположенную в пространстве определенным образом, некая клетка отправляет огромное количество кодовых «точек» (или, придерживаясь научной терминологии, «испускает множество нервных импульсов»). Если же полосу развернуть примерно на 90 градусов, данная клетка практически прекращает реагировать на раздражитель (рис. 16.3). Кроме того, были обнаружены клетки, определенным образом реагирующие на движение полос. При этом создавалось впечатление, что нервные клетки ведут себя так, будто они принадлежат какому-то другому, более высокоорганизованному уровню мозга, и способны самостоятельно обрабатывать получаемые от клеток сетчатки сигналы таким образом, что

вконце концов соответствующие специфические реакции обнаруживаются уже в самих этих клетках.

пространственная

I

ориентация полосы

реакция отдельной

сильная

средняя отсутствие

нервной клетки

 

реакции

Рис. 16.3. Реакция отдельной нервной клетки на пространственную ориентацию полосы, попадающей в поле зрения подопытного животного

Иными словами, это выглядело так, словно здесь протекает своего рода вычислительный процесс, результат которого и определяет реакцию клетки на раздражение: на словах такой результат соответствует высказыванию

224

ГЛАВА 16

типа «полоса расположена вертикально» или «полоса расположена горизонтально».

Эти данные могут подкрепить одну выдвигавшуюся ранее гипотезу о функционировании мозга, объяснявшую, как именно мозг осуществляет распознавание образов. Согласно этой соблазнительной гипотезе, в мозге существуют некие особые клетки, которые способны распознавать не только полосы как таковые, но и, к примеру, целые лица. В специальной литературе эти гипотетические клетки шутливо называются «бабушкины клетки», потому что именно благодаря им каждый из нас и оказывается способен узнавать собственную бабушку. Большинство ученых отмежевалось от этой гипотезы; с одной стороны, несмотря на усиленные поиски, никому до сих пор так и не удалось обнаружить (например у тех же шимпанзе) клеток, которые распознавали бы составленное из полос изображение. В то же время, благодаря результатам исследований различных повреждений мозга (например при несчастных случаях), нам стало известно, что функции мышления или памяти не имеют строгой локализации в какой-то одной области мозга, а распределены в довольно обширных зонах. Сегодня наука склоняется к предположению, что, имея дело с такими функциями мозга, как восприятие, память и мышление, следует говорить об уже упоминавшемся коллективном эффекте, который означает, что в подобных процессах задействована отнюдь не одна, а гораздо большее количество нервных клеток. Однако если речь идет о больших группах нейронов, функционирующих «коллективно», то встает вопрос о том, каким же образом такое взаимодействие можно обнаружить; именно этим вопросом мы вскоре и займемся.

Но сначала во избежание недоразумений следует сделать еще одно замечание. Из вышесказанного можно было бы заключить, что отдельные способности (например зрение или слух) связаны с деятельностью всего мозга целиком, но это далеко не так. Уже давно известно (опять-таки благодаря исследованиям, связанным с травмами мозга), что за определенные функции — зрение, слух, обоняние, говорение — отвечают вполне определенные участки мозга. Кстати, речевых центров даже два: один занимается формой, т. е. грамматикой, а второй — содержанием, т. е. лексикой. Благодаря использованию новых медико-физических вспомогательных средств стало возможно воочию убедиться в распределении функций между различными участками мозга: чем активнее деятельность определенной зоны, тем интенсивнее она снабжается кровью. Интенсивность кровотока можно также исследовать физико-химическими методами, рассматривать которые подробнее в этой книге мы не будем; при помощи аппарата, аналогичного

ПРОЦЕССЫ ВОЗБУЖДЕНИЯ В МОЗГЕ: ГИПОТЕЗЫ И ЭКСПЕРИМЕНТЫ

225

рентгеновскому (хотя в основе его работы лежат совершенно иные физические процессы), можно увидеть, какие участки мозга интенсивнее других снабжаются кровью, и узнать таким образом, за какой вид деятельности несет ответственность тот или иной участок (рис. 16.4). Перед нами вновь в высшей степени интересный с точки зрения синергетики случай взаимодействия огромного множества отдельных систем.

Теперь о процессах, протекающих в отдельных областях мозга — к примеру, в области, отвечающей за зрительное восприятие. Существуют математические модели, описывающие протекание подобных процессов; например, в основе одной из таких моделей лежит предположение о существовании всего двух типов нейронов, что возвращает нас к экспериментальным данным, показывающим, что одни нейроны усиливают нервные импульсы, а другие, напротив, гасят их, подавляя сигнал. Поначалу существование последних, выполняющих функцию, так сказать, торможения, может удивить. Однако их работа на самом деле чрезвычайно важна: без них мы оказались бы жертвами непрекращающегося воздействия на наш мозг всевозможных раздражителей, снова и снова возбуждающих нейроны.

Следует также рассмотреть вопрос о принципиальном тестировании подобных моделей деятельности мозга. Важнейшим во всех системах, исследуемых нами в этой книге, является коллективное взаимодействие отдельных элементов; в данном случае такими элементами будут нейроны — основные элементы нервной системы.

Процессы возбуждения в мозге: гипотезы и эксперименты

Ранее — особенно в главах, посвященных рассмотрению физических и химических процессов, — уже было показано, что одни и те же структуры могут быть образованы совершенно различными системами. Например,как в жидкости, так и в воздухе может возникнуть одинаковое упорядоченное движение молекул, наблюдаемое на макроскопическом уровне. При этом мы снова и снова сталкивались с тем, что эти процессы нисколько не зависят от взаимосвязей между отдельными элементами системы. Постоянное возникновение одних и тех же структур обусловлено лишь тем, что система оказывается в неустойчивом состоянии.

Когда американский биоматематик Джек Коуэн, принимавший участие в симпозиуме, посвященном развитию синергетики, узнал об упомянутых аналогиях (в частности, о возникновении ячеистых структур в жидкости),

226

Гллвл 16

Рис. 16.4. Изменение кровоснабжения отдельных участков мозга при смене вида деятельности' движение, говорение и т, д,

LZZ

ш.ншмшшплс и 1Я£':1.1.опи.1 :H.I£OW а кшшюкляюа

228

Рис. 16.5. Теория возникновения галлюцинаций, предложенная Дж.Коуэном. Слева: структуры, воспринимаемые людьми, находящимися под воздействием наркотиков. Справа: упорядоченные структуры, возникающие в мозге, согласно гипотезе Коуэна

ГЛАВА 16

ему в голову пришла смелая идея: он увидел связь между галлюцинациями и образованием в мозге макроскопической структуры, состоящей из возбужденных нейронов. Люди, находящиеся под воздействием наркотиков (к примеру, ЛСД), сообщают о возникновении перед ними довольно типичной картины: они видят что-то похожее на концентрические круги, или разворачивающуюся спираль, или расходящиеся из одного центра лучи (рис. 16.5). К моменту появления у Коуэна предположения о взаимосвязи между галлюцинациями и образованием в мозге упорядоченных структур, состоящих из возбужденных нейронов,

унего уже были разработки, относящиеся

кматематической теории переноса изображения, поступающего на сетчатку, на участок коры головного мозга, отвечающий за зрительное восприятие. Отображения такого рода могут быть наглядно представлены следующим образом. В сетчатке имеются нервные клетки, называемые рецеп-

торными; такие клетки способны преображать в нервный импульс попадающий на них свет (мы не рассматриваем здесь этот сложный процесс подробно — за рамками нашего рассмотрения остается, в частности, вопрос о том, осуществляется ли подобная трансформация отдельной клеткой или же целым комплексом таких клеток). Во всяком случае, сигнал от этой — условно говоря — клетки передается через нервные тяжи на совершенно определенный участок коры головного мозга. Смежные клетки на сетчатке имеют особую «телефонную связь» со смежными же клетками коры. Однако если мы привлечем гипотезу Дж. Коуэна для объяснения того, каким образом становится возможным четырехугольное отображение на поверхности коры круглых изображений с сетчатки, мы обнаружим удивительное обстоятельство. Появляющиеся при галлюцинациях картины соответствуют прямым полосам структуры, возникающей при этом в мозге и состоящей из возбужденных нервных клеток, причем структуры эти отличает друг от дру-

ПРОЦЕССЫ ВОЗБУЖДЕНИЯ В МОЗГЕ: ГИПОТЕЗЫ И ЭКСПЕРИМЕНТЫ

229

га только направленность полос (рис. 16.5). Коуэну даже удалось свести возникающие при галлюцинациях сложные образы к первичным структурам, и в частности, к уже хорошо известным нам ячеистым образованиям.

Как же следует понимать совокупность описанных фактов? При приеме наркотических средств происходит, по всей видимости, дестабилизация функций мозга, вследствие чего прежнее состояние покоя и равновесия сменяется на новое макроскопическое состояние, характеризующееся новой пространственной структурой из возбужденных нейронов. Таким образом, перед нами картина, аналогичная той, что наблюдается при нагревании слоя жидкости: сначала жидкость находится в состоянии покоя, а затем — при нагревании — она приходит в движение, т. е. изменяет свое макроскопическое состояние. При приеме наркотических веществ также достигается определенная концентрация наркотика в крови, приводящая к дестабилизации деятельности мозга; нейроны начинают бурно испускать огромное количество импульсов, причем — что интересно — испускать их не просто

один за другим, а совершенно неупорядоченно. Разумеется, мы ни в коем случае не утверждаем, что в физическом смысле мозг начинает двигаться подобно нагреваемой жидкости; мы лишь пытаемся наглядно представить аналогию, обоснованную чисто математически.

В настоящее время подобные идеи могут рассматриваться всего лишь как умозрительные построения. Не исключено, что их можно проверить экспериментальным путем, но совершенно очевидно, что на данном этапе развития методов исследования мозга подобные эксперименты неосуществимы. До сих пор изучались только импульсы, испускаемые одной отдельной клеткой, в которую введен микроэлектрод; для обнаружения же такого рода возбуждений в различных клетках необходимо, очевидно, одновременное использование целого ряда электродов. В этой области для ученых открываются, несомненно, весьма захватывающие исследовательские перспективы'.

1 Некоторые шаги в этом направлении уже предприняты, и здесь мне хотелось бы сослаться на работы Чарлза М.Грея, Вольфа Зингера с соавторами и Р.Экхорна с соавторами. В предыдущем разделе «Бабушкины клетки» мы говорили о клетках, ответственных за зрительное восприятие движения и ориентации световых полос, т. е. реагирующих на соответствующее раздражение нервным импульсом. Как обнаружили исследователи в ходе экспериментов с кошками, при восприятии двумя или группой таких нервных клеток движения одних и тех же световых полос происходит нечто удивительное: нейроны, которые могут быть расположены даже в нескольких миллиметрах друг от друга, испускают импульсы абсолютно синхронно — точно так же, как атомы лазера.

230

Гллвл 16

\Ф№Ф>Ч^

Рис. 16.6. Электроэнцефалограмма при нормальной деятельности мола (вверху) и по время приступа эпилепсии (внизу)

Может показаться весьма и весьма гипотетичным положение, согласно которому множество нейронов испускают импульсы одновременно и в полном соответствии с некоторым определенным образцом. Однако в ходе исследований мозга был обнаружен феномен, при котором действительно наблюдалась подобная корреляция и синхронизация нервных импульсов. Речь идет о возникновении в мозге электромагнитных волн, которые могут быть сняты и измерены посредством электро- и магнитоэнцефалографии. Совершенно особую картину можно получить, снимая такого рода показания во время, например, приступа эпилепсии (рис. 16.6). Упорядоченные структуры, образуемые возбужденными нейронами (в данном случае это временные колебания), связаны, как мы видим, с процессом, свойственным определенному заболеванию. С этой точки зрения временные колебания, возникающие во время приступа эпилепсии, абсолютно аналогичны образующимся в мозге в результате приема наркотических средств пространственным структурам, до сих пор продолжающим оставаться всего лишь гипотезой. Интересно, что унификация поведения множества нейронов подразумевает некую патологию: нам, разумеется, отнюдь не следует делать из этого вывод, что мышление никак не связано с эффектами корреляции — как раз наоборот. Если мы вообразим себе нейроны в виде ламп, вспыхивающих в момент возбуждения, то мы увидим постоянно изменяющуюся картину загорающихся и гаснущих огоньков, и определить при этом, каким образом мигание этих огоньков складываются в единую картину, весьма и весьма непросто. Настолько непросто, что на настоящий момент нам приходится довольствоваться лишь относительно непрямыми указаниями на возможность согласованного во времени функционирования многих нейронов.