Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Методичка МИППС 2часть.doc
Скачиваний:
12
Добавлен:
22.05.2015
Размер:
1.48 Mб
Скачать

5.4 Знакопеременные ряды

Это ряды, содержащие как положительные, так и отрицательные члены. Частным случаем таких рядов являются знакочередующиеся ряды: ряды, в которых за каждым положительным членом следует отрицательный и за каждым отрицательным членом следует положительный:

или

.

Признак Лейбница.

Если в знакочередующемся ряде

1) абсолютные величины членов ряда убывают ;

2) ,

то знакочередующийся ряд сходится и его сумма не превосходит модуля первого члена.

Следствие.Пусть знакочередующийся ряд сходится по признаку Лейбница. Если сумму этого ряда заменить суммойnпервых членов, то погрешность, допускаемая при этом не превосходит модуля первого отброшенного члена.

Рассмотрим знакочередующийся ряд и ряд, составленный из абсолютных его величин. Если ряд, составленный из абсолютных величин, сходится, то знакопеременный ряд называетсяабсолютно сходящимсярядом. Если знакопеременный ряд сходится, а ряд, составленный из абсолютных величин, расходится, то знакопеременный ряд называетсяусловно сходящимся.

Пример.Исследовать на условную и абсолютную сходимость ряд.

Это знакочередующийся ряд. Применим признак Лейбница.

1) ;

2) . => ряд сходится по признаку Лейбница.

Исследуем ряд на условную и абсолютную сходимость. Для этого рассмотрим ряд, составленный из абсолютных величин данного ряда.

– это обобщенный гармонический ряд, он сходится, так какk=3>1, тогда знакочередующийся рядявляется абсолютно сходящимся рядом.

5.5 Степенные ряды

Степенным рядом называется ряд вида:

,

где – постоянные величины, коэффициенты ряда, числоa– центр ряда.

При a=0 имеем

(1)

При степенной ряд (1) принимает вид

(2)

Это уже числовой ряд. он может сходиться или расходиться.

Если ряд (2) сходится, то точка сходимостистепенного ряда (1). Если ряд (2) расходится, тоточка расходимости. Совокупность точек сходимости называетсяобластью сходимостистепенного ряда.

Теорема Абеля. Для любого степенного ряда (1) существует интервал , внутри которого ряд сходится абсолютно, вне его расходится, а на границах может иметь различный характер сходимости.

– радиус интервала сходимости.

– интервал сходимости.

Если R=0, то точкаx=0 – единственная точка сходимости.

Если R=, то ряд сходится на всей числовой оси.

Пример.

1) Найти радиус и интервал сходимости степенного ряда. Исследовать сходимость ряда на концах интервала.

.

Тогда (-5; 5) – интервал, внутри которого ряд сходится абсолютно. Исследуем характер сходимости ряда на границах.

1) x=–5, тогда степенной ряд примет вид

.

Это знакочередующийся ряд. Для него применим признак Лейбница:

1)

– не выполнено первое условие признака Лейбница, тогда ряд

расходится, точка– точка расходимости.

2) x=5;– ряд расходится по следствию из необходимого признака, тогдаx=5 – точка расходимости.

(-5; 5) – область сходимости данного степенного ряда.

2)

.

– интервал сходимости данного степенного ряда. Исследуем на границах:

1) , тогда степенной ряд примет вид:

– это знакочередующийся ряд. Проверим два условия:

1) ;

2) , тогда рядсходится по признаку Лейбница, точка– есть точка сходимости первоначального степенного ряда, она входит в область сходимости.

2) . Сравним этот ряд с гармоническим, который, как известно, расходится.

– конечное число, тогда по следствию из признака сравнения ряды ведут себя одинаково, т. е. оба расходятся, поэтому точка– точка расходимости начального степенного ряда.

– область сходимости степенного ряда.