Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

01_Солнцев_пособие_текст

.pdf
Скачиваний:
18
Добавлен:
27.03.2015
Размер:
2.72 Mб
Скачать

ДАННЫЕ В ГИС

Как уже было сказано, одним из столпов ГИС являются данные. В общем случае данные делятся на две группы:

Позиционные (географические) данные. Их особенность заключается в том, что они в себе несут информацию о положении объекта в пространстве. Примером может послужить точка отбора проб, для которой указаны координаты

Непозиционные (атрибутивные) данные. Их особенность заключается в том, что они несут

информацию о свойствах объекта, при этом не описывая, где этот объект находится. Для упомянутой выше точки отбора проб примером атрибутивных данных может служить информация о количестве видов организмов, отловленных на точке.

Данные в ГИС описывают реальные объекты, такие как дороги, здания, водоемы, лесные массивы. Реальные объекты можно разделить на две абстрактные категории: дискретные (дома, территориальные зоны) и непрерывные (рельеф, уровень осадков, среднегодовая температура). Для представления этих двух категорий объектов используются векторные и растровые данные.

Растровые данные

Растровые данные хранятся в виде наборов величин, упорядоченных в форме прямоугольной сетки. Ячейки этой сетки называются пикселями. Наиболее распространенным способом получения растровых данных о поверхности Земли является дистанционное зондирование, проводимое при помощи спутников. Хранение растровых данных может осуществляться в графических форматах, например TIF или JPEG, или в бинарном виде в базах данных.

Векторные данные

Наиболее распространёнными типами векторных объектов являются:

Точки

Используются для обозначения географических объектов, для которых важно местоположение, а не их форма или размеры. Возможность обозначения объекта точкой зависит от масштаба карты. В то время как на карте мира города целесообразно обозначать точечными объектами, то на карте города сам город представляется в виде множества объектов. В ГИС точечный объект изображается в виде некоторой геометрической фигуры небольших размеров (квадратик, кружок, крестик), либо пиктограммой, передающей тип реального объекта.

Полилинии

Служат для изображения линейных объектов. Полилиния — ломаная линия, составленная из отрезков прямых. Полилиниями изображаются дороги, железнодорожные пути, реки, улицы, водопровод. Допустимость изображения объектов полилиниями также зависит от масштаба карты. Например, крупная река в масштабах континента вполне может изображаться линейным объектом, тогда как уже в масштабах города требуется её изображение площадным объектом. Характеристикой линейного объекта является длина.

Многоугольники (полигоны)

Служат для обозначения площадных объектов с четкими границами. Примерами могут служить озера, парки, здания, страны, континенты. Характеризуются площадью и периметром.

В ГИС к векторным объектам могут быть привязаны семантические данные. К примеру, на карте территориального зонирования к площадным объектам, представляющим зоны, может быть привязана характеристика типа зоны. Структуру и типы данных определяет пользователь. На основе численных значений, присвоенных векторным объектам на карте, может строиться тематическая карта, на которой эти значения обозначены цветами в соответствии с цветовой шкалой, либо окружностями разного размера.

Векторные данные также могут описывать непрерывные поля величин. Поля при этом изображаются в виде изолиний или контурных линий. Одним из способов представления рельефа является нерегулярная триангуляционная сетка (TIN, triangulated irregular networks). Такая сетка формируется множеством точек с привязанными значениями (в данном случае высота). Значения в произвольной точке внутри сетки получаются путем интерполяции значений в узлах треугольника, в который попадает эта точка.

11

Векторные данные обычно имеют гораздо меньший объём, чем растровые. Их легко трансформировать и проводить над ними бинарные операции. Векторные данные позволяют проводить различные типы пространственного анализа, к примеру, поиск кратчайшего пути в дорожной сети.

12

СИСТЕМЫ КООРДИНАТ

Координаты — величины, определяющие положение точки (тела) в пространстве (на плоскости, на прямой). Совокупность координат всех точек пространства является системой координат. Географические координаты определяют положение точки на земной поверхности (рис.

1).

Рис. 1 Система географических координат

Широта

Широта — угол φ между местным направлением зенита и плоскостью экватора, отсчитываемый от 0° до 90° в обе стороны от экватора. Географическую широту точек, лежащих в северном полушарии, (северную широту) принято считать положительной, широту точек в южном полушарии — отрицательной. О широтах, близких к полюсам, принято говорить как о высоких, а о близких к экватору — как о низких. От широты места, как и от времени года, зависит продолжительность дня. Из-за отличия формы Земли (геоида) от шара географическая широта точек несколько отличается от их геоцентрической широты, т. е. от угла между направлением на данную точку из центра Земли и плоскостью экватора. Широту места можно определить с помощью таких астрономических инструментов как секстант или гномон (прямое измерение), также можно воспользоваться системами GPS или ГЛОНАСС (косвенное измерение).

Долгота

Долгота — угол λ между плоскостью меридиана, проходящего через данную точку, и плоскостью начального нулевого меридиана, от которого ведётся отсчёт долготы. Долготы от 0° до 180° к востоку от нулевого меридиана называют восточными, к западу — западными. Восточные долготы принято считать положительными, западные — отрицательными. Выбор нулевого меридиана произволен и зависит только от соглашения. Сейчас за нулевой меридиан принят Гринвичский меридиан, проходящий через обсерваторию в Гринвиче, на юго-востоке Лондона. В качестве нулевого ранее выбирались меридианы обсерваторий Парижа, Кадиса, Пулково и т. д. От долготы зависит местное время.

Высота

13

Чтобы полностью определить положение точки трёхмерного пространства, необходима третья координата — высота. Расстояние до центра планеты не используется в географии: оно удобно лишь при описании очень глубоких областей планеты или, напротив, при расчёте орбит в космосе.

В пределах географической оболочки применяется обычно 'высота над уровнем моря', отсчитываемая от уровня «сглаженной» поверхности — геоида. Такая система трёх координат оказывается ортогональной, что упрощает ряд вычислений. Высота над уровнем моря удобна ещё тем, что связана с атмосферным давлением. Расстояние от земной поверхности (ввысь или вглубь) часто используется для описания места, однако не служит координатой

Форма Земли

В результате длительного развития представлений о форме Земли как планеты сложилось понятие о геоиде. Термин предложил в 1873 году немецкий физик Иоганн Бенедикт Листинг. Поверхность геоида совпадает с поверхностью морей и океанов в их спокойном состоянии и мысленно продолжается под материки. Эта поверхность принимается за математическую поверхность Земли, или "уровень моря", от которого отсчитывают высоты точек земной поверхности (так называемые ортометрические высоты).

Чтобы упростить решение проблемы, М.С. Молоденский вместо геоида предложил использовать поверхность квазигеоида, для описания которого достаточно теоретически рассчитанных значений так называемой нормальной силы тяжести на земной поверхности без привлечения данных по распределению масс и плотностей в теле Земли. Но если в рядах сферических функций оставить гораздо меньшее количество членов, то можно получить более простую модель геоида. Наиболее удобной из таких моделей (математической поверхностью) является двухосный эллипсоид вращения, вследствие того, что он имеет намного более простую математическую форму, доступен для математических расчетов и сильно не отличается от фактической грушевидной формы Земли. Поверхность геоида отличается от поверхности эллипсоида в пределах 100 метров в ту или иную сторону, что гораздо меньше, чем отличия эллипсоида и сферы. В последние пятнадцать лет спутниковые данные позволили, используя новые методы измерений, определить оптимально соответствующий поверхности Земли эллипсоид, который связывает координаты с центром масс Земли. Являясь геоцентрическим (глобальным), этот эллипсоид использует центр масс Земли в качестве начала отсчета. Наиболее широкое использование в настоящее время получил геоцентрический (глобальный) эллипсоид WGS84 (World Goodetic System 1984). Он служит основой для измерения местоположений во всем мире. Общеземной эллипсоид ориентируется в теле Земли согласно следующим условиям:

Малая полуось должна совпадать с осью вращения Земли.

Центр эллипсоида должен совпадать с центром масс Земли.

Сумма квадратов отступлений геоида от общеземного эллипсоида должна быть по всей Земле наименьшей из всех возможных

ВРФ в качестве глобального эллипсоида, используемого в картографии, принят эллипсоид ПЗ-

90.И если глобальный эллипсоид наилучшим образом согласуется с поверхностью геоида в целом, то для того, чтобы описать поверхность Земли для данной конкретной территории, используют так называемые локальные эллипсоиды, которые наилучшим образом согласуются с геоидом на ограниченной части его поверхности (рис. 2).

14

Рис. 2 Схема взаимосвязи геоида, глобального и локального элипсоида

Ориентирование локального эллипсоида в теле Земли подчиняется следующим требованиям:

Сумма квадратов отступлений геоида от эллипсоида должна быть наименьшей из всех возможных для данной территории

Сумма квадратов уклонений отвесных линий от перпендикуляра (нормали) к поверхности эллипсоида должна быть наименьшей из всех возможных для данной территории.

Для точных работ необходимо учитывать положение конкретного эллипсоида по отношению

кгеоиду. Эта базовая информация, необходимая для преобразования координатных систем и картографических проекций, в основе которых лежат различные эллипсоиды. Существует несколько методов преобразований координатных систем. Самый простой (и наиболее грубый) осуществляется пересчетом географических координат (широты, долготы и высоты) из исходной координатной системы в требуемую путем перевода исходных географических координат в прямоугольные геоцентрические, вычислением величины сдвига центров координат и последующим переводом опять в географические координаты. Такой метод предполагает, что направления осей двух эллипсоидов параллельны, что во многих случаях не соответствует действительности. Для работ на небольшой территории погрешности, вносимые этим предположением, были меньше, чем точность самих данных. Однако, по мере накопления и уточнения данных и повышения точности измерений, стало очевидно, что преобразование по трем параметрам не подходит для больших территорий и глобального использования, если требуется максимальная точность и единый набор параметров преобразования. М.С. Молоденский разработал формулы для применения параметров сдвига географических координат (без перевода их в прямоугольные геоцентрические) по трем параметрам (сдвиг по трем осям) и разности между большими полуосями и сжатием исходного эллипсоида и целевого эллипсоида — еще два параметра. Повышенная точность достигается преобразованием Хелмерта с 7-ю параметрами — смещение центра одного эллипсоида относительно другого по трем координатам и поворотом его по трем углам с учетом масштабного коэффициента, показывающего изменение линейного масштаба. Есть две его разновидности, различающиеся присвоением знака для параметров поворота. Такие линейные и угловые смещения референц-эллипсоидов относительно центра масс Земли в англоязычной литературе принято называть словом Datum. В отечественной геодезии применяют термин "геодезические даты". Это так называемые исходные данные, необходимые для задания начала отсчета в географической системе координат. Они определяются для некой реальной точки на поверхности Земли, для которой фиксируются значения широты и долготы, производится совмещение нормали к поверхности референц-эллипсоида и отвесной линии в данной точке, а плоскость меридиана устанавливается параллельно оси вращения Земли. На рис. 3 приведена иерархия связи систем координат и проекций.

15

Рис. 3 Иерархия связи систем координат и проекций

Проекции

Положение объекта на какой-либо поверхности или в пространстве определяется с помощью угловых или линейных величин, называющихся координатами. В системе географических координат положение любой точки земной поверхности относительно начала координат определяется указанием угловых величин широты и долготы. Географическую систему координат можно изобразить на плоскости в виде сетки с ячейками одинакового размера, где по оси ординат откладывается широта, а по оси абсцисс — долгота. Однако помимо сферической системы координат, использующей угловые координаты, существуют и другие, позволяющие описывать не только абсолютные положения объектов, но и метрические характеристики (длина, площадь) и отношения с другими объектами в географическом пространстве. Угловые величины не удобны для этих целей, поскольку не имеют стандартной длины — величина градуса в метрах меняется в зависимости от широты местности (здесь можно воспользоваться калькулятором для пересчета угловых единиц в линейные). Для преодоления этих трудностей, данные переводят из угловых географических координат в прямоугольные спроектированные координаты. Спроектированная система координат — прямоугольная система, с началом координат в определенной точке, чаще всего имеющей координаты 0,0. Спроектированная система координат связана с географической набором специальных формул — проекцией. Другими словами, проекция — это математически выраженный способ отображения (пример) поверхности Земли или других небесных тел, принимаемых за эллипсоид, сферу или другие регулярные поверхности, на плоскости.

Но даже аппроксимированную до эллипсоида, поверхность Земли нельзя отобразить на плоскости с сохранением всех пространственных отношений одновременно: углов между направлениями, расстояний и площадей. Любой карте присущи искажения длин, площадей, углов и форм. Искажения длин на карте выражается в том, что масштаб длин на ней изменяется при переходе от одной точки к другой, а также при изменении направления в данной точке. Искажения площадей выражаются в том, что масштаб площадей в разных местах карты различен и нарушается соотношения площадей различных географических объектов. Искажения углов заключаются в том, что углы между направлениями на карте не равны соответствующим углам на поверхности. Искажения форм заключаются в том, что фигуры объектов на карте не подобны фигурам соответствующих географических объектов на местности. Все виды искажений на карте связаны друг с другом и изменение одного из них влечет за собой изменение других. Особый характер имеет связь между искажением углов и площадей. Они на карте находятся как бы в противоречии друг с другом и уменьшение одного из них влечет увеличение другого. Наиболее полно все виды искажений в данной точке карты можно представить в виде эллипса искажений. Форма эллипса характеризует искажение углов и форм — они искажены тем больше, чем больше эллипс отличается от окружности. Площадь эллипса пропорциональна искажению площадей, и чем она сильнее отличается от площади эллипса на линии (в точке) нулевых искажений, тем больше искажены площади.

По характеру искажений различают следующие картографические проекции:

Равновеликие. На карте отсутствуют искажения площадей. Значительны искажения углов и форм. Карты, составленные в таких проекциях, удобны для определения площадей

Равноугольные. Отсутствуют искажения углов и формы небольших объектов. Весьма удобны для решения навигационных задач. Угол на местности всегда равен углу на карте, линия

16

прямая на местности, прямая на карте. Главным примером данной проекции является поперечно-цилиндрическая проекция Меркатора (1569) и до сих пор она используется для морских навигационных карт

Равнопромежуточные. Масштаб длин по одному из главных направлений (взаимно перпендикулярные направления, по одному из которых масштаб длин имеет наибольшее, а по другому — наименьшее значение) сохраняется постоянным. Искажения углов и площадей как бы уравновешиваются. Различают равнопромежуточные проекции по меридианам или параллелям. В них искажения длин отсутствуют по одному из направлений: либо вдоль меридиана, либо вдоль параллели

Произвольные. На карте в любых соотношениях имеются искажения и углов, и площадей. Но эти искажения распределяются по карте наиболее выигрышным образом, при этом достигается некий компромисс. Например, минимальные искажения приходятся на центральную часть карты, а все сжатия и растяжения "сбрасываются" к её краям.

По виду вспомогательной поверхности (поверхности, на которую проецируется земной эллипсоид или шар при его отображении на плоскость ) различают проекции:

Азимутальные, в которых поверхность эллипсоида или шара переносится на касательную к ней или секущую её плоскость.

Цилиндрические, в которых поверхность эллипсоида или шара переносится на боковую поверхность касательного к ней или секущего её цилиндра, после чего последний разрезается по образующей и развертывается в плоскость.

Конические, в которых поверхность эллипсоида или шара переносится на боковую поверхность касательного к ней или секущего её конуса, после чего последний разрезается по образующей и развертывается в плоскость.

По ориентировки вспомогательной поверхности относительно полярной оси или экватора эллипсоида или шара различают проекции:

Нормальные, в которых ось вспомогательной поверхности совпадает с осью земного эллипсоида или шара; в азимутальных проекциях плоскость перпендикулярна полярной оси.

Поперечные, в которых ось вспомогательной поверхности лежит в плоскости экватора земного эллипсоида или шара и перпендикулярна полярной оси; в азимутальных проекциях плоскость перпендикулярна нормали, лежащей в экваториальной плоскости поверхности.

Косые, в которых ось вспомогательной поверхности совпадает с нормалью, находящейся между полярной осью и плоскостью экватора земного эллипсоида или шара; в азимутальных проекциях плоскость к этой нормали перпендикулярна

Разграфка и номенклатура топографических карт

Для топографических карт основной является проекция Гаусса Крюгера — поперечная цилиндрическая равноугольная на касательный цилиндр. В других странах её аналогом является проекция UTM (Universal Transverse Mercator) на секущий цилиндр. Проекция имеет следующую конструкцию. Воображаемый цилиндр, на который происходит проецирование, охватывает земной эллипсоид по меридиану, называемому центральным (осевым) меридианом зоны.

Зона — это участок земной поверхности, ограниченный двумя меридианами Проекция делит земной эллипсоид на 60 зон шириной 6°. Зоны нумеруются с запада на восток, начиная от 0°: зона 1 простирается от меридиана 0° до меридиана 6°, её центральный меридиан 3°. Зона 2 - от 6° до 12°, и т.д. Нумерация номенклатурных листов начинается с 180°, например, лист N-39 находится в 9-й зоне. Связь номера зоны (N) и долготы осевого меридиана (L) осуществляется по формуле: L=6N-3 Цилиндр разворачивают в плоскость и накладывают прямоугольную километровую сетку. За ось OY принимают изображение осевого меридиана зоны (положительное направление оси OY — на север), за ось OX принимают изображение экватора (положительное направление оси OX — на восток).

В каждой из шестиградусных зон своя система прямоугольных координат. Вертикальные линии сетки параллельны центральному меридиану. Для того, чтобы все прямоугольные координаты

17

были положительны, вводится восточное смещение (false easting), равное 500 000 м, т. е. координата Y на центральном меридиане равна 500 000 м. Для определенности, чтобы только по численному значению координаты Y можно было определить, к какой зоне относятся эти значения, к ним слева приписывается номер зоны.

Система разбиения на шестиградусные зоны тесно связана с построением системы разграфки и номенклатуры листов топографических карт разных масштабов. Каждой шестиградусной зоне соответствует одна колонна листов карты 1:1000000. В основе разграфки и номенклатуры лежит лист карты масштаба 1:1000000, который имеет размеры 4° по широте и 6° по долготе (рис. 4).

Набор листов карты, отвечающий по долготе одной зоне, имеет одну цифру в номенклатуре, но отличается буквой, обозначающей пояс по широте. В одной трапеции карты масштаба 1:1000000 содержатся 4 трапеции масштаба 1:500000, 36 трапеций масштаба 1:200000 и 144 трапеции масштаба 1:100000. Карты масштаба 1:500000 обозначаются прописными буквами русского алфавита А, Б, В, Г, которые записываются после номенклатуры листа карты масштаба 1:1000000, например N37-В. Листы карты масштаба 1:200000 обозначаются римскими цифрами I - XXXVI, которые ставятся после номенклатуры листа карты масштаба 1:1000000, например, N37-XX. Трапеции карты масштаба 1:100000 обозначаются арабскими цифрами от 1 до 144, которые ставятся после номенклатуры листа карты масштаба 1:1000000, например N37-134.

Лист карты масштаба 1:100000 положен в основу разграфки и номенклатуры карт более крупного масштаба. В одном листе карты масштаба 1:100000 содержатся 4 листа масштаба 1:50000, которые обозначаются прописными буквами русского алфавита А, Б, В, Г, например, N37-134-Б. Лист карты масштаба 1:50000 содержит 4 листа карты масштаба 1:25000, которые обозначаются строчными буквами русского алфавита а, б, в, г, например, N37-120-Б-в. Лист карты масштаба 1:25000 содержит 4 листа карты масштаба 1:10000, которые обозначаются арабскими цифрами 1,2,3,4, например, N37-120-Б-в-4. Кроме того, лист карты масштаба 1:100000 содержит 256 листов карты масштаба 1:5000, которые обозначаются порядковыми арабскими цифрами от 1 до 256, взятыми в скобки, например, N37-134-(245). Лист карты масштаба 1:5000 содержит 9 листов масштаба 1:2000, которые обозначаются русскими строчными буквами от а до и, например, N37-134- (245-ж).

На врезке рис.4 дана схема разграфки карт и планов для участков площадью менее 20 кв.км.

18

Рис. 4 Разграфка и номенклатура топографических карт (на примере листа N-37)

19

ОБЩИЕ СВЕДЕНИЯ ПО СИСТЕМЕ ARCGIS

При работе с ГИС в проекте или многопользовательской среде можно использовать три настольные приложения ArcGIS :

ArcCatalog – это приложение для хранения ваших пространственных данных, для управления базами данных вашего проекта и для регистрации и просмотра метаданных.

ArcMap используется для отображения и редактирования задач так же, как для основанного на картах анализа.

ArcToolbox используется для конверсии данных и обработки геоданных.

Используя эти три приложения вместе, Вы можете выполнять любые задачи ГИС от простых

до продвинутых, включая отображение, организацию данных, географический анализ, редактирование данных и обработку геоданных.

ArcCatalog

ArcCatalog позволяет Вам находить, предварительно просматривать, документировать, организовывать географические данные и создавать сложные базы геоданных. ArcCatalog обеспечивает каркас для организации большого и разнотипного хранения данных ГИС. Различные виды ваших данных помогают Вам быстро найти то, в чем Вы нуждаетесь, находится ли это в файле, персональной базе геоданных или удаленной RDBMS, обслуживаемой ArcSDE. Вы можете использовать ArcCatalog, чтобы организовать папки и данные на основе файла, когда Вы создаете базу данных проекта на вашем компьютере. Вы можете создавать личные базы геоданных на вашем компьютере и использовать инструментальные средства в ArcCatalog, чтобы создавать или импортировать классы пространственных объектов и таблицы. Вы можете также рассматривать и модифицировать метаданные, позволяющие Вам документировать ваши наборы данных и проекты.

Просмотр данных в ArcCatalog

Когда Вы нуждаетесь в подробной информации относительно ветви дерева Каталога, Вы можете использовать ярлыки Contents (Содержание), Preview (Предварительный просмотр), и Metadata (Метаданные), чтобы рассмотреть ваши данные многими различными путями. Если Вы выбираете источник данных в дереве, Вы можете рассматривать это несколькими путями в зависимости от ярлыка, который Вы выбираете. Каждый ярлык имеет связанную с ним инструментальную панель, которая позволяет Вам изменять то, как Вы видите ваши данные.

Соединение с вашими данными

Когда Вы запускаете ArcCatalog впервые, дерево Каталога имеет ветвь для каждого локального жёсткого диска. Вы можете рассматривать содержимое ветви, дважды щелкая на ней или щелкая на знаке "плюс" за ней. Вы можете также создавать новые ветви в дереве Каталога, чтобы облегчить возможность перемещаться к вашим данным. Эти ветви названы connections (связями) (рис.5).

20