Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Обри ди Грей - Отменить старение

.pdf
Скачиваний:
1322
Добавлен:
12.02.2015
Размер:
5.93 Mб
Скачать

р а з в а л к л е т о ч н о й э н е р г е т и к и

61

ше, чем был в расцвете сил, то вряд ли возможно, чтобы незначительная доля клеток, да еще с низким уровнем энергообеспечения, в митохондриях которых, однако, образуется не больше свободных радикалов, чем в соседних клетках (фактически вообще не образуется), оказывала существенное негативное влияние на функционирование своей ткани или организма в целом. С этой точки зрения теория старения на основе митохондриальных свободных радикалов приказала долго жить.

Такова была ситуация в середине 1990–х годов, когда я осознал неудовлетворительность науки о старении и решил засучить рукава, чтобы изменить положение дел. Печальное состояние теории митохондриальных свободных радикалов призывало меня к новому синтетическому подходу. С одной стороны, имелись веские факты в поддержку центральной роли митохондриальных свободных радикалов в старении; с другой стороны, теории порочного круга (в том виде, в каком они были тогда) не согласовывались с новыми данными. Вот в эту сумятицу я и попал со своими первыми официальными научными публикациями 1997 9и1998 10 гг.; здесь мне и повезло сделать признанный вклад в биогеронтологию. Во–первых, благодаря моим идеям удалось объяснить, каким образом в стареющих клетках накапливаются митохондрии, несущие одну и ту же мутацию, а не случайный их набор (что предсказывалось теорией порочного круга); во–вторых, удалось объяснить, каким образом малое число клеток с мутантными митохондриями может двигать старение организма в целом. Давайте рассмотрим эти аспекты по очереди.

Выживание худших

По теории порочного круга в каждой митохондрии на протяжении ее существования медленно накапливаются небольшие случайные изменения. Тот факт, что в клетках, содержащих мутантные митохондрии, все эти органеллы несут одну и ту же мутацию и мутантные митохондрии полностью вытесняют все нормальные, доказывал неверность этого положения.

Единственной разумной альтернативой представлялась “клональная экспансия”: в одной митохондрии происходит негативное изменение , и ее потомки мало по малу занимают всю клетку. Вспомним, что митохондрии размножаются делением на две части наподобие амеб: в “родительской” органелле копируется ДНК, так что образуются две идентичные копии исходного материала и соответственно два идентичных потомка, каждый из которых несет точную копию и всякой мутации, имевшейся в “родительской” органелле. Поэтому представлялось несомненным, что “клон” одинаковых мутантных митохондрий в клетке является продуктом одной митохондрии,

62

о т м е н и т ь с т а р е н и е

в которой произошла данная мутация и которая передала ее своему потомству, вытеснившему все прочие митохондрии и занявшему все их места.

Однако парадоксальна сама мысль о том, что митохондрии с мутантной ДНК каким–то образом завоевывают доминирующее положение в клетке. Ведь эти органеллы так или иначе дефектны, в их ДНК из–за свободнорадикальной атаки или из–за ошибки репликации не хватает одного или более крупных участков. Хотя изредка мутации оказываются полезными – иначе не шла бы эволюция – крайне маловероятно, чтобы такое событие случалось снова и снова, и чтобы в результате случайных мутаций в далеко не рядом находящихся клетках определенная митохондрия получала дарвиновское приспособительное преимущество над другими митохондриями. И таки известно, что наблюдаемые в митохондриях мутации вредоносны: они полностью лишают органеллу способности осуществлять окислительное фосфорилирование и тем самым – обеспечения АТР.

Идея “клональной экспансии” также плохо согласуется с тем фактом, что многие различные мутации могут вызывать вытеснение какими–то определенными митохондриями всех прочих. В то время как в пределах одной и той же клетки все мутантные митохондрии содержат одну и ту же специфическую мутацию, в другой подобной клетке могут быть митохондрии, содержащие совершенно другую мутацию.

Выходило, что есть не одна специфическая мутация, дающая мутантной митохондрии селективное преимущество, а множество мутаций, возникших независимо в единичных митохондриях в далеко находящихся друг от друга клетках, несут ту же конкурентоспособность. “Неужели это действительно вероятно,– спрашивал я себя, – чтобы происходило множество дающих преимущество, но не связанных мутаций?”

Да! Все эти различные мутации имели нечто общее. Они вызывают не умеренные изменения, повреждая какой–то один белок, – все они принадлежат к типу мутаций, результатом которых является прекращение синтеза всех 13 белков, кодируемых митохондриальной ДНК. Вот это общее свойство, как казалось мне, и могло быть ключом к ответу на вопрос, почему мутантным митохондриям удается доминировать.

Я стал размышлять, чем такие митохондрии отличаются от обычных, нормальных. Они, ясное дело, не производят много АТР, давая клетке только небольшое количество энергии за счет начальных этапов извлечения химической энергии из питательных веществ; это количество составляет лишь часть того, что дает функционирующая система окислительного фосфорилирования. Такое положение, разумеется, плохо для клетки, но мало повлияет на саму митохондрию, которая в норме отдает практически весь продуцируемый ею АТР. И хотя я не видел пока, как можно объяснить, что

р а з в а л к л е т о ч н о й э н е р г е т и к и

63

при сокращении отдачи энергии мутантная митохондрия имеет селективное преимущество, было ясно, что – вопреки первому впечатлению – сокращение отдачи энергии на деле не является прямым недостатком по сравнению с другими митохондриями данной клетки, который мог бы помешать доминированию.

Другое отличие митохондрии, не способной к окислительному фосфорилированию, от других митохондрий в пределах клетки представлялось более похожим на преимущество: в такой митохондрии больше не образуются свободные радикалы. Напомню, что свободные радикалы возникают при утечке электронов в регулируемых каналах, по которым идет поток протонов в “резервуары”, движущий “турбины” во внутренней мембране митохондрий. Если сама система протонных насосов отсутствует, то и утечки никакой нет – и нет свободных радикалов.

Отсутствие необходимости справляться с постоянным свободнорадикальным разрушением представляется полезным для митохондрии, но неясно, как именно оно ведет к конкурентному преимуществу по сравнению с окружающими нормальными органеллами. Правда, прекращается бомбардировка ДНК, но она к этому моменту уже повреждена (делецией).

Ясно также, что внутренняя мембрана митохондрии более не испытывает атак свободных радикалов, но опять же это, по–видимому, не имеет значения для старения, так как в митохондриях мембраны в любом случае постоянно рвутся и заменяются, будь то во время репликации или под конец их краткой индивидуальной жизни, когда митохондрия с дефектными мембранами отправляется в клеточную “печь для сжигания мусора”.

“Ну–ка, минуточку, минуточку…”– подумал я.

Подобно другим исследователям, ломавшим голову над этим вопросом, я пытался вообразить какое–то обусловленное мутацией улучшение в функционировании митохондрии – что–то на микроскопическом уровне эквивалентное таким преимуществам в борьбе за существование в макромире, как более острые зубы, более быстрые ноги, большая плодовитость. А что если вместо этого важно другое: митохондрия–носитель мутации, не становясь “лучше”, избегает разрушения?

Реутилизация отходов

Что заставляет митохондрии отправляться в клеточную систему утилизации отходов? Чтобы точно ответить на этот вопрос, требуется еще много работы. Тем не менее, уже тогда, когда Алекс Камфорт критиковал теорию старения, базирующуюся на образовании свободных радикалов в митохондриях, бытовало мнение, что существует некий избирательный процесс,

64

о т м е н и т ь с т а р е н и е

специфически отмечающий старые, поврежденные органеллы для разрушения. Но эту точку зрения нельзя принимать на веру без доказательств. Долгое время считалось, что некоторые компоненты клетки находятся в кругообороте постоянного процесса случайной реутилизации: лизосомы (точнее, особая разновидность предшественников лизосом, называемая аутофагосомами, или аутофаговакуолями), циркулируя по клетке, поглощают различные клеточные компоненты, хватая что попадется, просто набирая случайным образом определенное количество материала, так что рано или поздно всякая структура клетки включается в круговорот и обновляется.

Но теперь более распространено иное представление: лизосомы поглощают белки и другие клеточные компоненты целенаправленно. Отчасти это просто способ использования скудных ресурсов. Представим себе, что для сборки старых разрушающихся транспортных средств с дорог (для уменьшения загрязнения воздуха; сокращения выделения в атмосферу газов, усугубляющих парниковый эффект; благоустройства территорий; снижения цен на металлы благодаря их реутилизации), власти рассылают по стране специальных агентов, которые, нецеленаправленно осматривая небогатые районы, случайным образом отбирают машины для отправки на свалку. Такая деятельность дала бы кое–какие результаты, но было бы зря уничтожено много вполне работоспособных автомобилей (даже если не касаться вопроса о праве частной собственности).

Но в некоторых случаях имеются более веские основания считать, что “на свалку” отправляются не случайно попавшиеся, а определенные органеллы. Некоторые клеточные компоненты, превысив срок своего полезного функционирования, становятся явно токсичными для клетки, если их быстро не ликвидировать. Подобно заколдованной метле в “Фантазии”1*, которая наполняет бочку водой до тех пор, пока та не перельется, так что вода затопит помещение, многие белки и органеллы приносят пользу лишь ка- кое–то ограниченное время; когда же их роль исчерпана, их нужно убрать, что в клетке означает разрушение для последующей реутилизации. Например, для мобилизации сил иммунной защиты на борьбу с проникшим в организм патогенным агентом требуется образование “провоспалительного” фермента, но, если дать этому ферменту действовать, способствуя воспалительному процессу, и после ликвидации угрозы, то разовьется разрушительное хроническое воспаление, проявляющееся по типу аутоиммунных заболеваний вроде ревматоидного артрита или системной красной волчанки.

Мне пришло в голову, что есть весомые причины, в силу которых клетке нужно разрушать митохондрии с мембранами, поврежденными свободными радикалами. Вспомним, что внутренняя митохондриальная мембрана игра-

р а з в а л к л е т о ч н о й э н е р г е т и к и

65

ет роль плотины перед резервуаром протонов, движущих энергогенераторную “турбину” комплекса V. “Дырки” в этой мембране означают истощающую резервуар утечку – холостой выход протонов, без генерации АТР. Факты, свидетельствующие в пользу этого представления, а именно утечки из–за поврежденных мембранных молекул, были обнаружены еще в 1970–е годы. 11

“Протекающие” митохондрии причиняли бы серьезный ущерб ограниченным ресурсам, ведь цепь переноса электронов продолжала бы работать, тратя извлекаемую из пищи энергию на бесплодные попытки заполнить протонный резервуар. Происходящие из питательных веществ электроны продолжали бы поступать в цепь, использующую их на перекачку через мембрану протонов, которые тут же “утекали” бы обратно, не создавая электрохимического градиента, необходимого для трансформации энергии в нужную клетке форму, без генерации АТР. Запасы энергии в клетке истощались бы, питательные вещества тратились бы на производство не АТР, а тепла, т.е. впустую.

Более того, из–за повреждений внутренней митохондриальной мембраны многие более мелкие белки внутримитохондриального пространства смогут выйти из митохондрии в цитоплазму. Если при этом они сохранят активность, то, очутившись в неположенном им месте, могут оказаться токсичными для клетки.

Для клетки прямой смысл иметь на месте какой–то механизм, обеспечивающий отправку митохондрий в лизосомы для разрушения, когда митохондриальные мембраны повреждаются в результате их собственной деятельности. Это предсказание, по–видимому, сбывается: недавно обнаружены (у дрожжей) специфические направляющие белки, которые метят митохондрии для лизосом.12 Пока еще неизвестно, каким образом в клетке решается, которые из митохондрий нужно пометить, но показано, что образование “дырок” в митохондриальной мембране вызывает некий сигнал, увеличивающий скорость отправку митохондрий “на свалку”.13

Я не сомневаюсь, что можно только приветствовать ликвидацию в клетке дефектных и потенциально токсичных компонентов, и природа, как всегда, выработала отличный способ, обеспечивающий это. Но вот что было очевидно: по иронии судьбы, крупные делеции митохондриальной ДНК позволят несущей их органелле ускользнуть от того самого механизма, который должен обеспечивать внесение митохондрии в “черный список” на уничтожение. Когда в митохондрии случается мутация того типа, что накапливаются с возрастом, в ней тут же прекращается окислительное фосфорилирование, а с ним – образование опасных свободных радикалов. Но сниженное образование свободных радикалов, в свою очередь, ведет к уменьшению причиняемого свободными радикалами вреда. Не забудьте, что, со-

66

о т м е н и т ь с т а р е н и е

гласно превалирующей теории порочного круга мутации митохондриальной ДНК умножаются, так как из–за них митохондрия производит больше свободных радикалов, чем немутантные органеллы. Вот тут, по–моему, сторонники этой теории и делали ошибку.

Что скрывается за чистыми мембранами

Дойдя в своих рассуждениях до этой точки, я тотчас понял, что мутантные митохондрии получают преимущество над нормальными. Даже в совершенно нормально функционирующей митохондрии постоянно с некоторой мало варьирующей небольшой скоростью образуются свободные радикалы, вызывающие повреждение мембран. Через несколько недель это повреждение достигает уровня, при котором митохондрии отправляются “на свалку”, и тогда в клетке возникает сигнал к новому циклу размножения митохондрий, чтобы заменить вышедшие из строя “энергостанции”.

Но этот процесс отсеивает только митохондрии с поврежденными мембранами; в них ДНК еще способна обеспечить транспорт электронов, ведущий к свободнорадикальному повреждению их мембран. Митохондрии с интактными (не затронутыми) мембранами, но поврежденной ДНК не будут иметь внешних признаков своих внутренних дефектов и ускользнут от Ангела Смерти.

После того, как определенное количество поврежденных митохондрий отправится на уничтожение лизосомами, в клетке возникнет сигнал к репликации митохондрий. Некоторые из оставшихся митохондрий или все они станут воспроизводить себя. А поскольку органеллы с крупными делециями ДНК почти всегда избегают печальной участи имеющих внешне выраженные повреждения, они получают возможность размножаться, тогда как многие митохондрии с поврежденными мембранами, но генетически интактные (!) исключаются из оборота прежде, чем успевают воспроизвести себя. Таким образом, мутантные митохондрии получают селективное преимущество над немутантными: всякий раз, когда происходит репликация митохондрий, все больше и больше таких органелл остаются вне отбраковки, а генетически нормальные органеллы выбраковываются и уничтожаются как “мусор”.

Так действует эволюция живых существ. Среди животных те особи, которые медленнее бегают или менее успешно ищут пищу, или хуже видят, легче становятся добычей хищника, более подвержены воздействию окружающей среды или болезням, из–за чего не успевают результативно размножиться и передать свои гены следующим поколениям. Тем временем другие, лучше приспособленные особи получают больше шансов оставить потомство, которое будет нести в своих генах то, что обеспечило преимуще-

р а з в а л к л е т о ч н о й э н е р г е т и к и

67

ство, и тем самым оно закрепляется в череде поколений. Постепенно гены, обусловливающие лучшее приспособление к опасным факторам внешней среды, становятся доминирующими в популяции.

В клетке выживанию митохондрий угрожает разрушение лизосомами – своего рода хищниками, благодаря которым выживают лишь митохондрии, пригодные для безопасного производства потребной клетке энергии. Путь, которым эволюционируют (да, эволюционируют!) митохондрии, – это способ маскировки, скрывающей их от “глаза хищника”. Совершенно нефункциональные митохондрии благодаря отсутствию повреждений в мембранах выглядят нормальными для механизма клеточного надзора. Эти органеллы, как фарисеи, чисты снаружи, но черны внутри.

Я пришел к выводу, что эта концепция “замаскированных мутантов” впервые дает последовательное объяснение преобладания в клетках дефектных митохондрий. Я назвал ее SOS (от англ. Survival of the Slowest – выживание самых медленных, или, шире, худших), поскольку постулируется приспособительное преимущество бездействующих (“медленных”, или худших) митохондрий в дарвиновской борьбе за существование во внутриклеточных “джунглях”. (См. рисунок 3.)

Теперь, объяснив, каким образом в небольшом числе клеток “приходят к власти” дефектные митохондрии, придется ответить на , быть может, еще более важный вопрос: каким образом эти клетки, составляющие лишь небольшую долю всех клеток организма, движут старение всего организма?

Скоро и на этот вопрос нашелся хороший ответ.

Гипотеза восстановительной “горячей точки”

В прежних моделях порочного круга не требовалось изобретать никакого дополнительного механизма, чтобы объяснить, какой вклад дают мутации митохондриальной ДНК в старение, поскольку предполагалось накопление

свозрастом все более дефектных митохондрий во множестве клеток. По мере того, как в этих клетках все больше и больше митохондрий случайным образом подвергаются свободнорадикальной бомбардировке, сами клетки все больше и больше страдают от окислительных повреждений, все больше и больше испытывают дефицит АТР и эффективность производства энергии

скаждым новым дефектом падает. Это было красивое разумное объяснение роли мутантных митохондрий в старении организма.

Но, как мы видели, оно явно неправильное. В большинстве клеток организма с возрастом не накапливаются мутантные митохондрии; это происходит самое большее в 1% из многих миллиардов составляющих организм клеток. Большинство клеток и тканей не страдают от падения производства

68

о т м е н и т ь с т а р е н и е

Рисунок 3.Схема SOS (выживания худших) накопления мутаций митохондриальной ДНК. (а) Предполагаемый нормальный кругооборот и обновление немутантных митохондрий; точками изображены повреждения мембран. (b) Клональная экспансия мутаций (обозначены буквой “Х”), обусловленная низким уровнем свободнорадикального повреждения мембран и малой скоростью разрушения лизосомами (L)

или доступности АТР, а образование свободных радикалов вовсе не возрастает, в большинстве накапливающихся мутантных митохондрий вообще не образуются свободные радикалы, поскольку отсутствует место их образования – цепь переноса электронов.

р а з в а л к л е т о ч н о й э н е р г е т и к и

69

Трудно было понять, каким образом столь малое число клеток, содержащих мутантные митохондрии и не причиняющих никакого явного вреда окружающим клеткам, могут быть движущей силой старения организма. Под грузом фактического материала многие биогеронтологи решили похоронить эту теорию старения, Однако, как вкратце говорилось выше в этой главе, нельзя сбросить со счета косвенные указания на вклад мутаций митохондриальной ДНК в старение. Чтобы согласовать две группы данных, требовалось истинно новое решение загадки.

Японимал, что любой усовершенствованный вариант теории старения на основе свободнорадикального поражения митохондрий должен включать два момента. Во–первых, поскольку клеток, захваченных негодными энергостанциями, мало, нужен какой–то механизм распространения вреда из клеток с мутантными митохондриями за их пределы. Во–вторых, нужно объяснить природу этого вреда, поскольку обычное предположение (свободные радикалы), по–видимому, исключалось тем фактом, что в мутантных митохондриях нормальное образование свободных радикалов перекрыто в самом их источнике.

Япопытался сообразить, что в первую очередь нужно для выживания клеток, занятых мутантными митохондриями. Что им служит источником энергии? Мутантные митохондрии не только не способны осуществлять окислительное фосфорилирование, которое должно удовлетворять в основном потребность клетки в АТР, но непонятно, как они вообще могут производить энергию в какой бы то ни было форме.

В верх по течению от перекрытой плотины

В нормальных клетках первый этап метаболизма глюкозы, поступившей с пищей, происходит в цитоплазме в процессе так называемого гликолиза, представляющего собой цепь химических реакций, в результате которых образуется АТР, пируват (продукт расщепления глюкозы) и некоторое количество электронов, которые могут привести в действие механизм окислительного фосфорилирования в митохондриях. Для переноса этих электронов в митохондрии служат специальные молекулы–переносчики, в частности никотинамидадениндинуклеотид (NAD+). Его восстановленная форма обозначается NADH.

Продукт гликолиза – пируват – тоже поступает внутрь митохондрий, где он далее расщепляется с образованием промежуточного продукта, называемого ацетилкоэнзимом А (сокращенно ацетилСоА). Этот последний затем используется как сырье в сложной последовательности химических реакций, называемой циклом трикарбоновых кислот (или циклом Кребса, или циклом лимонной кислоты), в результате которой получается намного

70

о т м е н и т ь с т а р е н и е

больше электронов (также используемых для образования NADH), чем путем гликолиза.

Наконец, NADH, получивший электроны в результате всех этих процессов (гликолиза, образования ацетилСоА из пирувата и цикла трикарбоновых кислот), поступает в цепь переноса электронов, где электроны используются для создания “резервуара” протонов, приводящих в действие механизм генерации энергии, дающий почти все требуемое клетке ее количество.

Биохимия этих процессов хорошо изучена, ее и студенты должны знать. Все они предназначены для поставки электронов в митохондриальную цепь их переноса. Что же будет, если эта цепь не действует, как в клетках с мутантными митохондриями?

Мне представлялось, что все должно застопориться. На каждом этапе от гликолиза до цикла трикарбоновых кислот включительно электроны “отгружаются” на NAD+ для отправки в цепь переноса электронов. Количество этих молекул–переносчиков, доступных для восстановления до NADH, ограничено, но в норме это несущественно: их всегда достаточно, потому что, отдав свой электрон в митохондриальную цепь переноса электронов, NADH превращается обратно в NAD+.

Но, когда естественный “прием груза” (электронов) отсутствует, NADH, по–видимому, некуда девать. (Сходную картину можно себе представить, вообразив, что все нефтеперегонные заводы на Земле вдруг встали. Тогда добычу нефти придется повсеместно прекратить, иначе нефтеналивные суда некуда будет разгружать, и, раз нагруженные, они так и останутся со своей опасной ношей и будут копиться, громоздясь, как в кошмаре.) Поскольку на каждом этапе – для гликолиза, для образования ацетилСоА из пирувата, для цикла трикарбоновых кислот – нужен NAD+,, отсутствие последнего должно, на первый взгляд, привести к остановке всего энергопроизводящего конвейера и у клетки вообще не останется механизмов генерации энергии в виде АТР, даже в относительно небольших количествах, которые обеспечивались перечисленными этапами.

Ситуация в клетках с мутантными митохондриями может быть еще хуже. NAD+ требуется для различных клеточных функций, помимо производства энергии. В отсутствие нормального кругооборота NAD+/NADH осуществлениеэтих функций будет истощать запас NAD+ и пополнять запас NADH, еще более расшатывая равновесие в клетке. По мнению некоторых исследователей, многие из осложнений диабета обусловлены избытком NADH и нехваткой NAD+, ведущих к нарушениям ряда процессов обмена веществ (хотя дисбаланс NAD+/NADH при диабете имеет иные причины, отличные от потери способности к окислительному фосфорилированию).