Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Линейная Алгебра от 2 октября 2013.doc
Скачиваний:
767
Добавлен:
10.02.2015
Размер:
3.44 Mб
Скачать

Действия над комплексными числами в тригонометрической форме

Сложение и вычитание удобнее производить над комплексными числами в алгебраической форме, а умножение и деление – в тригонометрической форме.

1. Умножений. Пусть даны два комплексных числа, записанных в тригонометрической форме: z1 = r1(cos1 + isin1) z2 = r2(cos2 + isin2).

z1z2 = r1r2(cos1cos2 – sin1sin2) + i(cos1sin2 + sin1cos2) = = r1r2(cos(1 + 2) + isin(1 + 2)).

Итак, модуль |z1z2| = r1r2, аргумент arg(z1z2) = arg z1 + arg z2.

Пример 1.13. Для z1 = 2(cos + isin) и z2 = 3(cos + isin) найти их произведение z1z2.

Решение. Применяем формулу для нахождения произведения двух комплексных чисел, записанных в тригонометрической форме. z1z2 = 23(cos( + ) + isin( + )) = 6(cos + isin) – тригонометрическая форма произведения чисел z1 и z2 или в алгебраической форме z1z2 = 6i.

2. Деление. ===

=

( cos(1 – 2) + isin(1 – 2))

Итак, модуль || = , аргумент arg() = arg z1 – arg z2.

Пример 1.14. Для z1 = 10(cos45 + isin45) и z2 = 5(cos60 + isin60) найти их частное от деления .

Решение.

(cos(45 – 60) + isin(45 – 60)) = 2(cos(–15) + isin(–15)) – тригонометрическая форма частного чисел z1 и z2. Заметим, что если данное выражение записать в виде равносильного выражения 2(cos15 – isin15), то это не будет уже тригонометрической формой записи комплексного числа.

3. Возведение в степень.

Если z = r(cos + isin), то zn = rn(cos(n) + isin(n)), где n  Z. Данная формула называется формулой Муавра9.

Пример 1.15. Для z = – i, найти z4.

Решение. Воспользуемся формулой Муавра, но для начала надо это комплексное число записать в тригонометрической форме. В примере 1.12 мы это уже находили z = – i = 2(cos + isin). Тогда z4 = (– i)4 = (2(cos + isin))4 = 24(cos + isin) =  = 16(cos + isin) – тригонометрическая форма результата возведения в четвертую степень данного комплексного числа. Найдем также и алгебраическую форму записи числа z4. z4 = 16(cos + isin) = 16(cos – isin) = 16( – i) =  = –8 – 8i.

4. Извлечение корня n-ой степени.

Можно показать, что каждое комплексное число, отличное от нуля, имеет ровно n корней n-й степени.

Если z = r(cos + isin), то

=

(cos + isin), гдеk = 0, 1, …, n – 1.

Пример 1.16. Найти .

Решение. Пусть z = 16, найдем сначала тригонометрическую форму данного комплексного числа. Имеем z = 16  a = 16, b = 0  r = == 16;т. к. a = 16 > 0, то  =  = =  == 0.Тогда z = 16 = r(cos + isin) = 16(cos0 + isin0).

Применяем формулу для нахождения корня n-ой степени.

==(cos + isin) =

= 2(cos + isin) ,где k = 0, 1, 2, 3. Найдем все четыре корня:

k = 0  0 = 2(cos + isin) = 2 (cos0 + isin0) = 2,

k = 1  1 = 2(cos + isin) = 2(cos + isin) = 2(0 +i1) = 2i,

k = 2  2 = 2(cos + isin) = 2(cos + isin) = 2(–1 + i0) = –2,

k = 3  3 = 2(cos + isin) = 2(cos + isin) = 2(0 –i)) = –2i.

Замечание. Геометрически все n значений корней n-ой степени из комплексного числа r(cos + isin) изображаются точками, лежащими на окружности с центром в начале координат, радиус которой равен . Если эти точки соединить, то в результате получится правильный n-угольник.