Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
elektrotekhnika.docx
Скачиваний:
7
Добавлен:
22.11.2019
Размер:
546.03 Кб
Скачать

Формула 1 — средняя мощность в активной нагрузке

 

 Представим что в цепь переменного тока, включена нагрузка индуктивного характера. При прохождении тока в течение первого периода, когда идет увеличение тока энергия от источника переходит в энергию магнитного поля. Но с уменьшением напряжения энергия магнитного поля переходит в электрическую и возвращается обратно в источник. При этом активная мощность равна нулю, так как ток не совершает работы, он всего лишь переходит от источника к нагрузке и обратно. Такой ток называется реактивным, а мощность реактивной. Она бесполезна и мало того еще и вредна. Так как ток, текущий по проводам увеличивается, а полезная работ совершаемая активным тока остается той же.

 Когда источник переменного тока нагружен на емкостную нагрузку, так же протекает реактивный ток. Емкость запасает энергию, а потом отдает ее источнику. Протекают процессы аналогичные с индуктивной нагрузкой. Только энергия накапливается в электрическом поле. Измеряется реактивная мощность вольт ампер реактивных, то есть ВАР.

 Допустим, что в цепи переменного тока присутствуют как активное, так и реактивное сопротивление, например индуктивность. Тогда суммарный ток будет отставать от напряжения на какой-то угол фи. Следовательно, активная мощность в цепи будет зависеть от величины индуктивности.

Рисунок 1 — треугольник напряжений

Формула 3 — мощность при наличии сдвига фаз между током и напряжением

 

 Существует еще такое понятие как полная мощность. Она равна произведению действующих значений тока и напряжения. Эта та мощность, которая потребляется от источника тока. Размерность полной и активной мощности совпадает, и чтобы их различать полную мощность измеряют в вольт-амперах (ВА). Косинус угла между полной мощностью и активной называется коэффициентом мощности. Он показывает, какая часть активной мощности может быть преобразована в другие виды энергии. То есть, какая часть энергии, передаваемая по линии передач, является полезной.

8. Понятие потокосцепления и индуктивности катушки.

Индукти́вность (или коэффициент самоиндукции) — коэффициент пропорциональности между электрическим током, текущим в каком-либо замкнутом контуре, и магнитным потоком, создаваемым этим током через поверхность[1], краем которой является этот контур.[2][3][4].

В формуле

 — магнитный поток,  — ток в контуре,  — индуктивность.

  • Нередко говорят об индуктивности прямого длинного провода(см.). В этом случае и других (особенно - в не отвечающих квазистационарному приближению) случаях, когда замкнутый контур непросто адекватно и однозначно указать, приведенное выше определение требует особых уточнений; отчасти полезным для этого оказывается подход (упоминаемый ниже), связывающий индуктивность с энергией магнитного поля.

Через индуктивность выражается ЭДС самоиндукции в контуре, возникающая при изменении в нём тока[4]:

.

Из этой формулы следует, что индуктивность численно равна ЭДС самоиндукции, возникающей в контуре при изменении силы тока на 1 А за 1 с.

При заданной силе тока индуктивность определяет энергию магнитного поля, создаваемого этим током[4]:

Практически участки цепи со значительной индуктивностью выполняют в виде катушек индуктивности[4]. Элементами малой индуктивности (применяемыми для больших рабочих частот) могут быть одиночные (в том числе и неполные) витки или даже прямые проводники; при высоких рабочих частотах необходимо учитывать индуктивность всех проводников[5].Для имитации индуктивности, т.е. ЭДС на элементе, пропорциональной и противоположной по знаку скорости изменения тока через этот элемент, в электронике используются[6] и устройства, не основанные на электромагнитной индукции (см. Гиратор); такому элементу можно приписать определенную эффективную индуктивность, используемую в расчетах полностью (хотя вообще говоря с определенными ограничивающими условиями) аналогично тому, как используется обычная индуктивность.

сумма магнитных потоков через все витки (это так называемый полный поток, называемый в электротехнике потокосцеплением, именно он фигурирует в качестве магнитного потока вообще в случае для катушки в общем определении индуктивности.

9. ЭДС самоиндукции в катушке и расчет энергии магнитного поля катушки индуктивности.

 Самоиндукция. При изменении силы тока в катушке происходит изменение магнитного потока, создаваемого этим током. Изменение магнитного потока, пронизывающего катушку, должно вызывать появление ЭДС индукции в катушке. Явление возникновения ЭДС индукции в электрической цепи в результате изменения силы тока в этой цепи называется самоиндукцией.    В соответствии с правилом Ленца ЭДС самоиндукции препятствует нарастанию силы тока при включении и убыванию силы тока при выключении цепи.    Явление самоиндукции можно наблюдать, собрав электрическую цепь из катушки с большой индуктивностью, резистора, двух одинаковых ламп накаливания и источника тока (рис. 197).

Резистор должен иметь такое же электрическое сопротивление, как и провод катушки. Опыт показывает, что при замыкании цепи электрическая лампа, включенная последовательно с катушкой, загорается несколько позже, чем лампа, включенная последовательно с резистором. Нарастанию тока в цепи катушки при замыкании препятствует ЭДС самоиндукции, возникающая при возрастании магнитного потока в катушке. При отключении источника тока вспыхивают обе лампы. В этом случае ток в цепи поддерживается ЭДС самоиндукции, возникающей при убывании магнитного потока в катушке.    ЭДС самоиндукции , возникающая в катушке с индуктивностью L, по закону электромагнитной индукции равна

,

или

.(55.3)

 ЭДС самоиндукции прямо пропорциональна индуктивности катушки и скорости изменения силы тока в катушке.    Используя выражение (55.3), можно дать второе определение единицы индуктивности: элемент электрической цепи обладает индуктивностью в 1 Гн, если при равномерном изменении силы тока в цепи на 1 А за 1 с в нем возникает ЭДС самоиндукции 1 В.

Энергия магнитного поля

Магнитное поле обладает энергией. Подобно тому, как в заряженном конденсаторе имеется запас электрической энергии, в катушке, по виткам которой протекает ток, имеется запас магнитной энергии.

Если включить электрическую лампу параллельно катушке с большой индуктивностью в электрическую цепь постоянного тока, то при размыкании ключа наблюдается кратковременная вспышка лампы. Ток в цепи возникает под действием ЭДС самоиндукции. Источником энергии, выделяющейся при этом в электрической цепи, является магнитное поле катушки.

Энергия Wм магнитного поля катушки с индуктивностью L, создаваемого током I, равна

                                      Wм = LI2/ 2

10. Однофазная эл. цепь переменного тока с индуктивностью. Реактивное сопротивление индуктивности. Кривые тока, напряжения и мгновенной мощности. Векторная диаграмма.

Цепь переменного тока с индуктивностью

Как мы видели выше, при включении, выключении и при всяком изменении тока в электрической цепи вследствие пересечения проводника своим же собственным магнитным полем в нем возникает индуктированная э. д. с. Эту э. д. с. мы называли э. д. с. самоиндукции. Э. д. с. самоиндукции имеет реактивный характер. Так, например, при увеличении тока в цепи э. д. с. самоиндукции будет направлена против э. д. с. источника напряжения, и поэтому ток в электрической цепи не может установиться сразу. И, наоборот, при уменьшении тока в цепи индуктируется э. д. с. самоиндукции такого направления, что, мешая току исчезать, она поддерживает этот убывающий ток.

Как нам уже известно, э. д. с. самоиндукции зависит от скорости изменения тока в цепи и от индуктивно-

сти этой цепи (числа витков, наличия стальных сердечников).

В цепи переменного тока э. д. с. самоиндукции возникает непрерывно, так как ток в цепи непрерывно изменяется.

На фиг. 143 представлена схема цепи переменного тока, содержащей катушку с индуктивностью L без стального сердечника. Для простоты будем считать сначала, что активное сопротивление катушки очень мало и им можно пренебречь.

Реакти́вное сопротивле́ние — электрическое сопротивление, обусловленное передачей энергии переменным током электрическому или магнитному полю (и обратно).    Если через обмотку катушки индуктивности с магнитопроводом (сердечником) пропустить переменный ток, изменяющийся по синусоидальному закону sim t (см. рис. 3), возникнет, как мы говорили, магнитный поток, намагничивающий магнитопровод. Ток и магнитный поток в магнитопроводе будут также переменными и возбудят в обмотке ЭДС индукции. Она равна напряжению на выводах катушки, и в то же время пропорциональна скорости изменения магнитного потока. В итоге напряжение будет сдвинуто по фазе на -90° относительно тока. Это значит, что ток отстает по фазе на 90° от напряжения.     Ток, протекающий через катушку, называется реактивным, и в отличие от тока через активное сопротивление, он не приводит к расходованию мощности.

Кривые. Переменный синусоидальный ток в течение периода имеет различные мгновенные значения. Естественно поставить вопрос, какое же значение тока будет измеряться амперметром, включенным в цепь?

При расчетах цепей переменного тока, а также при электрических измерениях неудобно пользоваться мгновенными или амплитудными значениями токов и напряжений, а их средние значения за период равны нулю. Кроме того, об электрическом эффекте периодически изменяющегося тока (о количестве выделенной теплоты, о совершенной работе и т. д.) нельзя судить по амплитуде этого тока.

Наиболее удобным оказалось введение понятий так называемых действующих значений тока и напряжения. В основу этих понятий положено тепловое (или механическое) действие тока, не зависящее от его направления.

Действующее значение переменного тока - это значение постоянного тока, при котором за период переменного тока в проводнике выделяется столько же теплоты, сколько и при переменном токе.

Для оценки действия, производимого переменным током, мы сравним его действия с тепловым эффектом постоянного тока.

Мощность Р постоянного тока I, проходящего через сопротивление r, будет Р = Р2r.

Мощность переменного тока выразится как средний эффект мгновенной мощности I2r за целый период или среднее значение от (Im х sinωt)2 х r за то же время.

Пусть среднее значение t2 за период будет М. Приравнивая мощность постоянного тока и мощность при переменном токе, имеем: I2r = Mr, откуда I = √M,

Величина I называется действующим значением переменного тока.

Среднее значение i2 при переменном токе определим следующим образом.

Построим синусоидальную кривую изменения тока. Возведя в квадрат каждое мгновенное значение тока, получим кривую зависимости Р от времени.

Действующее значение переменного тока

Обе половины этой кривой лежат выше горизонтальной оси, так как отрицательные значения тока (-i) во второй половине периода, будучи возведены в квадрат, дают положительные величины.

Построим прямоугольник с основанием Т и площадью, равной площади, ограниченной кривой i2 и горизонтальной осью. Высота прямоугольника М будет соответствовать среднему значению Р за период. Это значение за период, вычисленное при помощи высшей математики, будет равно 1/2I2m. Следовательно, М = 1/2I2m

Так как действующее значение I переменного тока равно I = √M, то окончательно I = Im / √2

Аналогично зависимость между действующим и амплитудным значениями для напряжения U и Е имеет вид:

U = Um / √2,E= Em / √2

Действующие значения переменных величин обозначаются прописными буквами без индексов (I, U, Е).

На основании сказанного выше можно сказать, что действующее значение переменного тока равно такому постоянному току, который, проходя через то же сопротивление, что и переменный ток, за то же время выделяет такое же количество энергии.

ВЕКТОРНАЯ ДИАГРАММА

графич. изображение значений физ. величин, изменяющихся по гармони ч. закону, и соотношений между ними при помощи векторов. В. д. широко применяют в электротехнике, акустике, оптике и т. д. В. д. в электротехнике - графич. изображение в виде векторов синусоидально изменяющихся электрич. величин. На рис. дана В. д. силы тока i = Imsin(2ПИft- 30°) и электрич. напряжения и = Um sin2GBft(i,u - мгновенные значения величин, Im, Um - их амплитуды, f - частота, t - время, 30 - нач. фаза тока при t = 0).

Векторная диаграмма

11. Однофазная эл. цепь переменного тока с R и L. Анализ напряжений цепи. Закон Ома для цепи переменного тока.

Реальная катушка индуктивности обычно имеет и активное сопротивление, которым нельзя пренебречь. На рисунке 1 “а” показана цепь катушки индуктивность которой L, а активное сопротивление R. на рисунке 1 “б” изображены кривые мгновенных значений напряжения u и тока i в цепи R и L, а на рисунке 1 “в” - взаимное расположение векторов напряжения Um и тока Im, сдвинутых относительно один другого на угол .

Если в цепи с R и L проходит синусоидальный ток , то мгновенное значение активной составляющей напряжения может быть определено как . Мгновенное значение напряжения на индуктивном сопротивлении в соответствии с формулой

.

(1).

Для анализа и расчета электрическая цепь графически представляется в виде электрической схемы, содержащей условные обозначения ее элементов и способы их соединения. Электрическая схема простейшей электрической цепи, обеспечивающей работу осветительной аппаратуры, представлена на рис. 1.1.

Рис. 1.1

Все устройства и объекты, входящие в состав электрической цепи, могут быть разделены на три группы:

1) Источники электрической энергии (питания).

Общим свойством всех источников питания является преобразование какого-либо вида энергии в электрическую. Источники, в которых происходит преобразование неэлектрической энергии в электрическую, называются первичными источниками. Вторичные источники – это такие источники, у которых и на входе, и на выходе – электрическая энергия (например, выпрямительные устройства).

2) Потребители электрической энергии.

Общим свойством всех потребителей является преобразование электроэнергии в другие виды энергии (например, нагревательный прибор). Иногда потребители называют нагрузкой.

3) Вспомогательные элементы цепи: соединительные провода, коммутационная аппаратура, аппаратура защиты, измерительные приборы и т.д., без которых реальная цепь не работает.

Все элементы цепи охвачены одним электромагнитным процессом.

В электрической схеме на рис. 1.1 электрическая энергия от источника ЭДС E, обладающего внутренним сопротивлением r0, с помощью вспомогательных элементов цепи передаются через регулировочный реостат R к потребителям (нагрузке): электрическим лампочкам EL1 и EL2.

Закон Ома для переменного тока

Для полного понимания электрических процессов в цепях переменного тока приводим Закон Ома для переменного тока. Он отличается от закона для цепей постоянного тока! Протекающий по обмотке переменный ток создает магнитный поток. Этот магнитный поток точно так же, как и ток, изменяет свою силу и направление. При изменении магнитного потока по закону индукции в обмотке создается ЭДС (электродвижущая сила). Направление ЭДС противоположно полярности подаваемого напряжения. Это явление называется самоиндукцией.Самоиндукция в цепи переменного тока частично проявляется в сдвиге по фазе между током и напряжением и частично — в падении индуктивного напряжения. Сопротивление цепи переменного тока становится значительно выше рассчитанного или измеренного сопротивления этой же цепи постоянному току.Сдвиг по фазе между током и напряжением обозначается углом φ. Индуктивное сопротивление (реактивное) обозначается X, активное сопроти ние — R, кажущееся сопротивление цепи или проводника — Z. Полное сопротивление (импеданс) вычисляется по формуле:

     

Где: Z - полное сопротивление, Ом R - активное сопротивление, Ом

Закон Ома для цепи переменного тока:

   U=I*Z   

Где: U - напряжение, В I - ток, А Z - полное сопротивление, Ом

поэтому мощность P полная (произведение тока и напряжения) = 220*значение тока полное.

12. Однофазная эл. цепь переменного тока с емкостью. Реактивное сопротивление емкости. Кривые напряжения, тока и мгновенной мощности. Векторная диаграмма.

Емкость

Все проводники с электрическим зарядом создают электрическое поле. Характеристикой этого поля является разность потенциалов (напряжение). Электрическую емкость определяют отношением заряда проводника к напряжению

C = Q / UC.

С учетом соотношения

i = dQ / dt

получаем формулу связи тока с напряжением

i = C · duC / dt.

Для удобства ее интегрируют и получают

(2.12)

uC = 1 / C · ∫ i dt.

Это соотношение является аналогом закона Ома для емкости.

Конструктивно емкость выполняется в виде двух проводников разделенных слоем диэлектрика. Форма проводников может быть плоской, трубчатой, шарообразной и др.

Единицей измерения емкости является фарада:

1Ф = 1Кл / 1В = 1Кулон / 1Вольт.

Оказалось, что фарада является большой единицей, например, емкость земного шара равна ≈ 0,7 Ф. Поэтому чаще всего используют дробные значения

1 пФ = 10–12 Ф, (пФ – пикофарада); 1 нФ = 10–9 Ф, (нФ – нанофарада); 1 мкФ = 10–6 Ф, (мкФ – микрофарада).

Условным обозначением емкости является символ

Для емкостного сопротивления была получена формула XC = 1 / ωC. Единицей измерения емкостного сопротивления является Ом. Величина хс зависит от частоты по обратно-пропорциональному закону. Просто реактивным сопротивлением цепи называют величину X = XL - XC.

Кривые. Переменный синусоидальный ток в течение периода имеет различные мгновенные значения. Естественно поставить вопрос, какое же значение тока будет измеряться амперметром, включенным в цепь?

При расчетах цепей переменного тока, а также при электрических измерениях неудобно пользоваться мгновенными или амплитудными значениями токов и напряжений, а их средние значения за период равны нулю. Кроме того, об электрическом эффекте периодически изменяющегося тока (о количестве выделенной теплоты, о совершенной работе и т. д.) нельзя судить по амплитуде этого тока.

Наиболее удобным оказалось введение понятий так называемых действующих значений тока и напряжения. В основу этих понятий положено тепловое (или механическое) действие тока, не зависящее от его направления.

Действующее значение переменного тока - это значение постоянного тока, при котором за период переменного тока в проводнике выделяется столько же теплоты, сколько и при переменном токе.

Для оценки действия, производимого переменным током, мы сравним его действия с тепловым эффектом постоянного тока.

Мощность Р постоянного тока I, проходящего через сопротивление r, будет Р = Р2r.

Мощность переменного тока выразится как средний эффект мгновенной мощности I2r за целый период или среднее значение от (Im х sinωt)2 х r за то же время.

Пусть среднее значение t2 за период будет М. Приравнивая мощность постоянного тока и мощность при переменном токе, имеем: I2r = Mr, откуда I = √M,

Величина I называется действующим значением переменного тока.

Среднее значение i2 при переменном токе определим следующим образом.

Построим синусоидальную кривую изменения тока. Возведя в квадрат каждое мгновенное значение тока, получим кривую зависимости Р от времени.

Действующее значение переменного тока

Обе половины этой кривой лежат выше горизонтальной оси, так как отрицательные значения тока (-i) во второй половине периода, будучи возведены в квадрат, дают положительные величины.

Построим прямоугольник с основанием Т и площадью, равной площади, ограниченной кривой i2 и горизонтальной осью. Высота прямоугольника М будет соответствовать среднему значению Р за период. Это значение за период, вычисленное при помощи высшей математики, будет равно 1/2I2m. Следовательно, М = 1/2I2m

Так как действующее значение I переменного тока равно I = √M, то окончательно I = Im / √2

Аналогично зависимость между действующим и амплитудным значениями для напряжения U и Е имеет вид:

U = Um / √2,E= Em / √2

Действующие значения переменных величин обозначаются прописными буквами без индексов (I, U, Е).

На основании сказанного выше можно сказать, что действующее значение переменного тока равно такому постоянному току, который, проходя через то же сопротивление, что и переменный ток, за то же время выделяет такое же количество энергии.

ВЕКТОРНАЯ ДИАГРАММА

графич. изображение значений физ. величин, изменяющихся по гармони ч. закону, и соотношений между ними при помощи векторов. В. д. широко применяют в электротехнике, акустике, оптике и т. д. В. д. в электротехнике - графич. изображение в виде векторов синусоидально изменяющихся электрич. величин. На рис. дана В. д. силы тока i = Imsin(2ПИft- 30°) и электрич. напряжения и = Um sin2GBft(i,u - мгновенные значения величин, Im, Um - их амплитуды, f - частота, t - время, 30 - нач. фаза тока при t = 0).

Векторная диаграмма

13. Однофазная эл. цепь переменного тока с R, L и C. Определение полного сопротивления Z. Треугольник сопротивлений и мощности.

Рассмотрим электрическую цепь, схема замещения которой показана на рис. 3.10. Цепь состоит из трех параллельных ветвей. Общим для всех ветвей является напряжение, приложенное к цепи.

Рис. 3.10 – Схема замещения параллельной цепи R, L, C

Пусть заданы напряжение U, параметры R, L, C и частота f. Требуется определить все токи и построить векторную диаграмму. Токи в ветвях соответственно равны (расчёт проводим в комплексной форме)

где комплексные сопротивления ветвей соответственно равны

Z1 = R1, Z2 = jωL = jXL, Z3 = - j1/ωC = - jXC.

Общий ток согласно первого закона Кирхгофа

I = IR + IL + IC.

Построение векторной диаграммы токов и напряжения для параллельной цепи удобно начинать с построения вектора напряжения U. Этот вектор проводим совпадающим с положительным направлением действительной оси + 1. (Вообще вектор напряжения откладывают в произвольном направлении). Этот вектор является базовым вектором.

Вектор тока IR совпадает по фазе с напряжением; вектор тока IL через индуктивность отстает от напряжения на угол 90°; вектор тока IС через ёмкость опережает напряжение на угол 90°. Условно принимаем, что IL<IС.

Геометрическая сумма трех векторов токов IR, IL, IС даёт вектор тока в неразветвлённый части цепи. Этот вектор I опережает вектор приложенного к цепи напряжения на угол φ. В этом случае говорят об ёмкостном характере нагрузки в цепи. В построенной диаграмме можно выделить треугольник ОАВ, называемый треугольником токов. Отдельно он показан на рис. 3.11, б. Сторона О1В1 называется активной составляющей тока, сторона А1В1 – реактивной составляющей тока. Из треугольника токов получаем модуль полного тока

где

IХ = IL + IС.

Рис. 3.11 а) векторная диаграмма для параллельной цепи R, L, C б) треугольник токов; в) треугольник проводимостей

Выражения для составляющих токов и угла φ

IR = I·cosφIX = I·sinφ,   .

Разделив стороны треугольника токов на напряжение, получим треугольник проводимостей О2А2В2, рис. 3.11, в. В нем сторона О2В2 представляет активную проводимость сторона А2В2 – реактивную проводимость а гипотенуза О2А2 представляет полную комплексную проводимость

у = g + jb,

а ее модуль

Обычно проводимостями пользуются при преобразовании сложных электрических цепей в более простые.

Z.При определении общего сопротивления внешней цепи нужно складывать ее реактивное и активное сопротивления. Но складывать эти два различных по своему характеру сопротивления нельзя.

В этом случае полное сопротивление цепи переменному току находят путем геометрического сложения.

Строят прямоугольный треугольник (см. рисунок 1) одной стороной которого служит величина индуктивного сопротивления, а другой - величина активного сопротивления. Искомое полное сопротивление цепи определится третьей стороной треугольника.

Рисунок 1. Определение полного сопротивления цепи, содержащей индуктивное и активное сопротивление

Полное сопротивление цепи обозначается латинской буквой Z и измеряется в омах. Из построения видно, что полное сопротивление всегда больше индуктивного и активного сопротивлений, отдельно взятых.

Алгебраическое выражение полного сопротивления цепи имеет вид:

где Z — общее сопротивление, R — активное сопротивление, XL — индуктивное сопротивление цепи.

Таким образом, полное сопротивление цепи переменному току, состоящей из активного и индуктивною сопротивлений, равно корню квадратному из суммы квадратов активного и индуктивного сопротивлений этой цепи.

Закон Ома для такой цепи выразится формулой I = U / Z,где Z — общее сопротивление цепи.

Из треугольника напряжений можно получить треугольник сопротивлений для рассматриваемой цепи, разделив стороны этого треугольника на комплексный ток (рис.2 а), из которого следует, что

(2)

а ) б)

Z S

X =XL-XC

j j Q

R P

Рис.2. Треугольники сопротивлений и мощностей.

Полученные выражения (2) показывают, что угол сдвига фаз j между током I и напряжением U питающей сети зависят от характера сопротивлений, включенных в цепь переменного тока.

Умножив стороны треугольника сопротивлений на квадрат тока в цепи I2, получим треугольник мощностей (рис.2 б). Активная мощность цепи переменного тока

P=S cosj

Или

Из треугольников сопротивлений и мощностей можно установить взаимосвязь между параметрами электрической цепи:

(3)

14. Условия наступления резонанса напряжений. Признаки резонанса напряжений. Волновые сопротивления. Добротность контура.

Резонанс напряжений выражается в том, что полное сопротивление контура становится наименьшим и равным активному сопротивлению, а ток становится максимальным. Условием резонанса напряжений является равенство частот генератора и контура f = fo, или равенство индуктивного и емкостного сопротивлений для тока генератора: xL = хC.

При резонансе напряжение на катушке или на конденсаторе в Q раз больше, чем напряжение генератора, равное U — Ir. Напряжение на L или С равно UL = Uc = р. Поэтому

Чем выше добротность контура Q, тем больше увеличение напряжения при резонансе. Повышение напряжения на катушке и на конденсаторе характерно для резонанса напряжений, само название которого подчеркивает увеличение напряжения в момент резонанса.

  • Волновое сопротивление — характеристика среды распространения волнового возмущения.

  • В акустике: в газе и жидкости — отношение звукового давления в бегущей плоской звуковой волне к колебательной скорости частиц среды, оно равно произведению плотности среды на скорость звука в ней; в твёрдых телах для продольных волн волновое сопротивление — отношение механического напряжения, взятого с обратным знаком, к колебательной скорости частиц среды. См. также статью удельное акустическое сопротивление.

  • В гидромеханике — часть гидро- и аэродинамического сопротивления, характеризующая затрату энергии на образование волн, например, волн, образующихся на поверхности воды при движении корабля, ударных волн, возникающих при сверхзвуковом полете самолёта, и т. д.

  • В электродинамике волновое сопротивление линий передачи — отношение амплитуды напряжения бегущей волны к амплитуде силы тока бегущей волны. (Бегущие волны могут присутствовать и в других режимах) Зависит от таких параметров линии, как ёмкость, диэлектрическая проницаемость материала проводника (зависит от частоты работы генератора сигнала), индуктивность и сопротивление на единицу длины.

ДОБРОТНОСТЬ КОНТУРА – характеризует качество колебательного контура, обозначается Q. Численно равна отношению напряжения на любом из реактивных участков на резонансе к напряжению, подводимому к контуру, или отношению реактивного сопротивления к активному. При большой добротности контура напряжение на нем значительно превышает напряжение на входе контура.

15. Условия наступления резонанса токов. Векторная диаграмма. Признаки резонанса токов.

Резонанс токов возникает в цепях переменного тока состоящих из источника колебаний и параллельного колебательного контура. Резонанс тока это увеличение тока проходящего через элементы контура при этом увеличение потребление тока от источника не происходит.

Рисунок 1 — параллельный колебательный контур

 

 Для возникновения резонанса токов необходимо чтобы реактивные сопротивления емкости и индуктивности контура были равны. А также частота собственных колебаний контура была равна частоте колебаний источника тока.

Векторная диаграмма.Любая электрическая синусоидальная величина на плоскости может быть представлена вращающимся против часовой стрелки радиус-вектором, модуль которого равен амплитуде функции, а скорость вращения – угловой частоте фазы. 1) Мгновенное значение на векторной диаграмме определяется как проекция радиус –вектора на ось ординат .2) Обычно векторные диаграммы для удобства строятся не для амплитудных, а для действительных значений. 3) Начальная фаза на векторной диаграмме определяется углом между радиус-вектором и осью абсцисс. Если угол отсчитывают от оси абсцисс к вектору по направлению вращения, начальная фаза положительна. 4) Сдвиг фаз на векторной диаграмме определяется углом между векторами напряжения и тока. Если угол отсчитывается от тока к напряжению по направлению вращения, то сдвиг фаз положителен.

Признаки.Резонанс токов может возникнуть при параллельном соединении индуктивности и емкости (рис. 198, а). В идеальном случае, когда в параллельных ветвях отсутствует активное сопротивление (R1=R2 = 0), условием резонанса токов является равенство реактивных сопротивлений ветвей, содержащих индуктивность и емкость, т. е. ?oL = 1/(?oC). Так как в рассматриваемом случае активная проводимость G = 0, ток в неразветвленной части цепи при резонансе I=U?(G2+(BL-BC)2)= 0. Значения токов в ветвях I1 и I2 будут равны (рис. 198,б), но токи будут сдвинуты по фазе на 180° (ток IL в индуктивности отстает по фазе от напряжения U на 90°, а ток в емкости I с опережает напряжение U на 90°). Следовательно, такой резонансный контур представляет собой для тока I бесконечно большое сопротивление и электрическая энергия в контур от источника не поступает. В то же время внутри контура протекают токи IL и Iс, т. е. имеет место процесс непрерывного обмена энергией внутри контура. Эта энергия переходит из индуктивности в емкость и обратно.

16. Понятие коэффициента мощности cosφ. Способы повышения cosφ.

Коэффициент использования мощности ( ) характеризует степень преобразования электроэнергии в другие виды, то есть в работу, определяет качество использования получаемой потребителем электроэнергии.

(вся энергия преобразуется в работу),

(только часть работы используется).

Для повышения коэффициента мощности (cosφ) электрических установок применяют компенсацию реактивной мощности.

Увеличения коэффициента мощности (уменьшения угла φ - сдвига фаз тока и напряжения) можно добиться следующими способами:

1) заменой мало загруженных двигателей двигателями меньшей мощности,

2) понижением напряжения

3) выключением двигателей и трансформаторов, работающих на холостом ходу,

4) включением в сеть специальных компенсирующих устройств, являющихся генераторами опережающего (емкостного) тока.

На мощных районных подстанциях для этой цели специально устанавливают синхронные компенсаторы - синхронные перевозбужденные электродвигатели.

17. Принцип получения трехфазных э.д.с. Трехфазная электрическая сеть при соединении обмоток генератора и приемника звездой. Развертка и векторная диаграмма э.д.с.

Трехфазная цепь является частным случаем многофазных систем электрических цепей, представляющих собой совокупность электрических цепей, в которых действуют синусоидальные ЭДС одинаковой частоты, отличающиеся по фазе одна от другой и создаваемые общим источником энергии.Каждую из частей многофазной системы, характеризующуюся одинаковым током, принято называть фазой. Таким образом, понятие "фаза" имеет в электротехнике два значения: первое – аргумент синусоидально изменяющейся величины, второе – часть многофазной системы электрических цепей. Цепи в зависимости от количества фаз называют двухфазными, трехфазными, шестифазными и т.п.

Самым простейшим способом создания многофазных ЭДС является использование вращающегося магнитного поля в трехфазном генераторе . В статоре закладывается система обмоток, которые можно представить условно сосредоточенными индуктивностями, расположенными в пространстве под углом 1200, имеющими одинаковое число витков. Внутри статора по направлению стрелки с частотой w вращается ротор , представляющий собой постоянный магнит. Вся система крепится на станине . В соответствии с законом электромагнитной индукции, в катушке индуктивности вращающееся магнитное поле наводит ЭДС, изменяющуюся по закону синуса. А так как обмотки расположены под углом 1200 , то ЭДС в каждой обмотке смещается во времени на тот же угол.

Соединение фаз генератора и приемника звездой

При соединение фаз обмотки генератора (или трансформатора) звездой их концы X, Y и Z соединяют в одну общую точку N, называемую нейтральной точкой (или нейтралью) (рис. 3.6). Концы фаз приемников (Za, Zb, Zc) также соединяют в одну точку n. Такое соединение называется соединение звезда.

Рис. 3.6

Провода A−a, B−b и C−c, соединяющие начала фаз генератора и приемника, называются линейными, провод N−n, соединяющий точку N генератора с точкой n приемника, – нейтральным.

 

 

ВЕКТОРНАЯ ДИАГРАММА

ВЕКТОРНАЯ ДИАГРАММА – графическое изображение значений периодически изменяющихся величин и соотношений между ними при помощи векторов. При изображении синусоидальной величины эдс

е = Ем sin(wt + ф)

вращающимся радиус-вектором (рис.1) длина его ОА в определенном масштабе представляет амплитуду Ем; угол, образованный вектором с положительной полуосью абсцисс х, в начальный момент времени равен начальной фазе ф, а угловая скорость вращения вектора – угловой частоте w.

18. Соотношения между фазными и линейными напряжениями и токами в трехфазной цепи при симметричной нагрузке, соединенной звездой. Векторные диаграммы.

Соотношение между линейными и фазными токами и напряжениями.

Напряжение между линейным проводом и нейтралью (Ua, Ub, Uc) называется фазным. Напряжение между двумя линейными проводами (UAB, UBC, UCA) называется линейным. Для соединения обмоток звездой, при симметричной нагрузке, справедливо соотношение между линейными и фазными токами и напряжениями:

Векторная диаграмма — графическое изображение меняющихся по закону синуса (косинуса) величин и соотношений между ними при помощи направленных отрезков — векторов. Векторные диаграммы широко применяются в электротехнике, акустике, оптике, теории колебаний итд.

Гармоническое (то есть синусоидальное) колебание может быть представлено графически в виде проекции на некоторую ось (обычно берут ось координат Оx) вектора, вращающегося с постоянной угловой скоростью ω. Длина вектора соответствует амплитуде, угол поворота относительно оси (Ox) - фазе.

Сумма (или разность) двух и более колебаний на векторной диаграмме представлена при этом (геометрической) суммой[1] (или разностью) векторов этих колебаний. Мгновенное значение искомой величины определяется при этом проекцией вектора суммы на ось Оx, амплитуда - длиной этого вектора, а фаза - углом его поворота относительно Ox.

19. Назначение нулевого провода в четырехпроводной цепи.

Занулением называется электрическое соединение металличе­ских нетоковедущих частей электроустановок с заземленной нейтра­лью вторичной обмотки трехфазного понижающего трансформатора или генератора, с заземленным выводом источника однофазного то­ка, с заземленной средней точкой в сетях постоянного тока.

Нулевым защитным проводником называется проводник, со­единяющий зануляемые части (корпуса, конструкции, кожухи и т.п.) с заземленной нейтралью источника питания (трансформатора, ге­нератора).

Заземление нейтрали источника питания, осуществляемое не­посредственно вблизи него, является рабочим заземлением электро­установки; оно выполняется аналогично защитному заземлению.

Согласно ПУЭ для сетей напряжением 380/220 В сопротивление рас­теканию рабочего зазем­ления нейтрали должно быть не более 4 Ом.

В трехфазной четырехпроводной сети чет­вертый проводник, при­соединенный к нейтрали источника питания и ис­пользуемый в цепи пита­ния электроприемников, называется нулевым ра­бочим проводником. Од­новременно он может вы­полнять также функцию нулевого защитного про­водника. На рисунке 1а по­казана принципиальная схема зануления корпуса электродвигателя М, защищенного от перегрузок и токов короткого замыкания плавкими предохранителями F.

В случае замыкания на корпус одной фазы питающей линии (например, фазы А) образуется цепь однофазного короткого замыка­ния через малые сопротивления контура: обмотка трансформатора zт, фазный провод линии zф, нулевой защитный провод zн.п.

20. Соединение нагрузки треугольником. Векторные диаграммы. Соотношения между фазными и линейными токами и напряжениями.

Кроме соединения звездой, генераторы, трансформаторы, дви­гатели и другие потребители трехфазного тока могут включаться треугольником.Объединяя попарно провода несвязанной шестипроводной системы и соединяя фазы,, переходим к трех­фазной трехпроводной системе, соединенной треугольником.

, соединение треугольником выполняется таким образом, чтобы конец фазы А был соединен с началом фазы В, конец фазы В соединен с началом фазы С и конец фазы С соединен с началом фазы А. К местам соединения фаз присоединяют линей­ные провода.

Если обмотки генератора соединены треугольником, , линейное напряжение создает каждая фазная обмотка. У потребителя, соединенного треугольником, линейное

напряжение подключается к зажимам фазного сопротивления. Сле­довательно, при соединении треугольником фазное напряжение равно линейному:

Соотношение между линейными и фазными токами и напряжениями.

Напряжение между линейным проводом и нейтралью (Ua, Ub, Uc) называется фазным. Напряжение между двумя линейными проводами (UAB, UBC, UCA) называется линейным. Для соединения обмоток звездой, при симметричной нагрузке, справедливо соотношение между линейными и фазными токами и напряжениями:

Векторная диаграмма — графическое изображение меняющихся по закону синуса (косинуса) величин и соотношений между ними при помощи направленных отрезков — векторов. Векторные диаграммы широко применяются в электротехнике, акустике, оптике, теории колебаний итд.

Гармоническое (то есть синусоидальное) колебание может быть представлено графически в виде проекции на некоторую ось (обычно берут ось координат Оx) вектора, вращающегося с постоянной угловой скоростью ω. Длина вектора соответствует амплитуде, угол поворота относительно оси (Ox) - фазе.

Сумма (или разность) двух и более колебаний на векторной диаграмме представлена при этом (геометрической) суммой[1] (или разностью) векторов этих колебаний. Мгновенное значение искомой величины определяется при этом проекцией вектора суммы на ось Оx, амплитуда - длиной этого вектора, а фаза - углом его поворота относительно Ox.

21. Активная, реактивная и полная мощности трехфазной цепи.

В трехфазных цепях, так же как и в однофазных, пользуются понятиями активной, реактивной и полной мощностей.

Соединение потребителей звездой

В общем случае несимметричной нагрузки активная мощность трехфазного приемника равна сумме активных мощностей отдельных фаз

P = Pa + Pb + Pc,где

Pa = Ua Ia cos φa; Pb = Ub Ib cos φb; Pc = Uc Ic cos φc; Ua, Ub, Uc; Ia, Ib, Ic – фазные напряжения и токи; φa, φb, φc – углы сдвига фаз между напряжением и током.

Реактивная мощность соответственно равна алгебраической сумме реактивных мощностей отдельных фаз

Q = Qa + Qb + Qc,где

Qa = Ua Ia sin φa; Qb = Ub Ib sin φb; Qc = Uc Ic sin φc.

Полная мощность отдельных фаз

Sa = Ua Ia; Sb = Ub Ib; Sc = Uc Ic.

Полная мощность трехфазного приемника

.

При симметричной системе напряжений (Ua = Ub = Uc = UФ) и симметричной нагрузке (Ia = Ib = Ic = IФ; φa = φb = φc = φ) фазные мощности равны Pa = Pb = Pc = PФ = UФ IФ cos φ; Qa = Qb = Qc = QФ = UФ IФ sin φ.

Активная мощность симметричного трехфазного приемника

P = 3 PФ = 3 UФ IФ cos φ.

Аналогично выражается и реактивная мощность

Q = 3 QФ = 3 UФ IФ sin φ.

Полная мощность

S = 3 SФ = 3 UФ IФ.

Отсюда следует, что в трехфазной цепи при симметричной системе напряжений и симметричной нагрузке достаточно измерить мощность одной фазы и утроить результат.

Соединение потребителей треугольником

В общем случае несимметричной нагрузки активная мощность трехфазного приемника равна сумме активных мощностей отдельных фаз

P = Pab + Pbc + Pca,где

Pab = Uab Iab cos φab; Pbc = Ubc Ibc cos φbc; Pca = Uca Ica cos φca; Uab, Ubc, Uca; Iab, Ibc, Ica – фазные напряжения и токи; φab, φbc, φca – углы сдвига фаз между напряжением и током.

Реактивная мощность соответственно равна алгебраической сумме реактивных мощностей отдельных фаз

Q = Qab + Qbc + Qca,где

Qab = Uab Iab sin φab; Qbc = Ubc Ibc sin φbc; Qca = Uca Ica sin φca.

Полная мощность отдельных фаз

Sab = Uab Iab; Sbc = Ubc Ibc; Sca = Uca Ica.

Полная мощность трехфазного приемника

.

При симметричной системе напряжений (Uab = Ubc = Uca = UФ) и симметричной нагрузке (Iab = Ibc = Ica = IФ; φab = φbc = φca = φ) фазные мощности равны Pab = Pbc = Pca = PФ = UФ IФ cos φ; Qab = Qbc = Qca = QФ = UФ IФ sin φ.

Активная мощность симметричного трехфазного приемника

P = 3 PФ = 3 UФ IФ cos φ.

Аналогично выражается и реактивная мощность

Q = 3 QФ = 3 UФ IФ sin φ.

Полная мощность

S = 3 SФ = 3 UФ IФ.

Так как за номинальные величины обычно принимают линейные напряжения и токи, то мощности удобней выражать через линейные величины UЛ и IЛ.

При соединении фаз симметричного приемника звездой UФ = UЛ /  , IФ = IЛ, при соединении треугольником UФ = UЛ, IФ = IЛ /  . Поэтому независимо от схемы соединения фаз приемника активная мощность при симметричной нагрузке определяется одной и той же формулой

P = UЛ IЛ cos φ.

где UЛ и IЛ – линейное напряжение и ток; cos φ – фазный.

Обычно индексы "л" и "ф" не указывают и формула принимает вид

P = U I cos φ.

Соответственно реактивная мощность

Q = U I sin φ.

и полная мощность

S = U I.

При этом надо помнить, что угол φ является углом сдвига фаз между фазными напряжением и током, и, что при неизмененном линейном напряжении, переключая приемник со звезды в треугольник его мощность увеличивается в три раза:

Δ P = Υ 3P.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]