Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Проектирование твердотопливного ракетного двига...rtf
Скачиваний:
141
Добавлен:
22.11.2019
Размер:
6.75 Mб
Скачать

2.4 Расчет звездчатого заряда рдтт

Звездчатые заряды нашли очень широкое применение в современных двигателях твердого топлива, благодаря отработанной технологии изготовления и высокому коэффициенту внутреннего заполнения, однако звездчатые заряды имеют дигрессивные остатки топлива, которые можно устранить профилированием внутренней поверхности камеры сгорания и применением вкладышей из легких материалов.

Также по сравнению со щелевыми зарядами они дают меньшее время работы, а также наличие участков с повышенной концентрацией напряжений.

Исходные данные:

Тяга двигателя Р = 160 кН;

Ускорение свободного падения g = 9,81 м/с2;

Время работы двигателя τ = 60 с;

Диаметр заряда Dз = 1,457 м;

Плотность топлива ρт = 1770 кг/м3;

Температура горения топлива Тк = 3300 К;

Скорость горения топлива u = 0,0085 м/с;

Удельный импульс тяги с учетом потерь Jуд = 2352 м/с;

Газовая постоянная R = 307 Дж/(кг·К);

Давление в КС рк = 4 МПа;

Порядок расчета:

Величина скорости горения, которую можно допустить в канале заряда, исходя из условия отсутствия эрозионного горения:

,

где – удельный вес топлива;

– приведенная сила топлива.

Площадь канала при отсутствии эрозионного горения:

,

где – вес топлива;

– масса топливного заряда;

χ=1 – коэффициент тепловых потерь.

Находим потребный коэффициент заполнения поперечного сечения камеры:

,

где – площадь КС.

Определяем потребное значение относительной толщины свода заряда:

.

По графикам зависимостей подбираем число лучей nл и тип заряда, обеспечивающий потребный коэффициент заполнения. Выбираем звездчатый заряд со скругленными углами nл = 6.

По графикам и определяем характеристику прогрессивности горения заряда σs и коэффициент дигрессивно догорающих остатков λК. σs = 1,78; λК = 0,09.

Определяем длину заряда:

.

Угол раскрытия лучей:

.

Из технологических соображений выбираем радиус скругления:

.

По таблице определяем значение углов: β = 86,503 ; θ = 40,535 .

Определяем толщину свода заряда:

.

L3/D3 = 1,58/1,457 = 1,084 - это значение лежит в диапазоне среднестатистических данных для третьей ступени.

Рис. 1 Схема звездчатого заряда.

2.5 Расчет на прочность корпуса рдтт

Расчет позволяет определить толщину элементов корпуса, находящихся под давлением газов в КС. Необходимо, чтобы корпус был прочен и имел минимальную массу и стоимость.

Исходные данные:

Давление в КС РДТТ

;

Внутренний диаметр КС

;

Материал обечайки КС

Сталь;

Предел прочности

;

Модуль упругости

;

Порядок расчета:

Толщина металлической обечайки корпуса

м,

Где - коэффициент запаса прочности;

- временное сопротивление материала обечайки с учетом нагрева, которое равно

;

- коэффициент, учитывающий снижение прочности при нагреве .

- максимально возможное давление в КС РДТТ при максимальной температуре эксплуатации заряда

;

- максимальное расчетное давление в КС РДТТ;

- коэффициент, учитывающий разброс по давлению и скорости горения заряда, =1,15.

Принимаем м.

Расчет силовой оболочки сопловой крышки

Толщина сопловой крышки РДТТ

,

где - запас прочности сопловой крышки;

- внутренний диаметр силовой оболочки КС;

- предел прочности материала сопловой крышки;

- коэффициент, определяющий высоту днища по отношению к диаметру .

Для сопловой крышки принимаем тот же материал, что и для обечайки.

Принимаем .

Расчет переднего днища

Исходные данные:

Внутренний диаметр камеры

;

Диаметр заряда

;

Материал днища

Сталь;

Предел прочности

;

Диаметр отверстия под фланец

.

Порядок расчета:

Толщина днища

,

где - коэффициент, учитывающий снижение прочности днища от отверстия под воспламенитель,

.

Наиболее нагруженными являются точки стыка обечайки корпуса РДТТ и днища, а также стыка днища и воспламенителя.

Главные радиусы кривизны и для выбранных расчетных точек (рис. 9).

Рис. 9 Расчетная схема к определению радиусов кривизны днища и в расчетных точках днища.

Точка 1.

, ,

где - текущий радиус ;

а – большая полуось эллиптического днища ;

b – малая полуось эллиптического днища .

Главные радиусы кривизны в точке 1:

,

.

Толщина днища в точке 1

.

Принимаем

Точка 2.

Угол в точке 2, когда

равен .

Главные радиусы кривизны в точке 2:

,

.

Толщина днища в точке 2

Принимаем