
- •Конструкции лэп Введение
- •1 Разработка и промышленное производство высокотехнологичных стальных опор новых типов для лэп напряжением 10, 35, 110 и 220 кВ
- •1.1 Стальные опоры из гнутых профилей переменного сечения для вл напряжением от 6 до 220 кв.
- •1.2 Опоры для лэп среднего напряжения (10 кВ).
- •1.3 Опоры для лэп высокого и сверхвысокого напряжения.
- •1.4 Опоры аварийного резерва.
- •2 Применение современной подвесной арматуры в линиях электропередач
- •2.2 Основные преимущества линейных подвесных стержневых кремнийорганических изоляторов
- •3 Технология лазерного сканирования при обследовании и инвентаризации лэп
- •3.1 Компания Геокосмос.
- •3.2 Принципы лазерного сканирования (лазерной локации).
- •3.3 Организация лазерно-локационной съемки лэп.
- •4 Технический прогресс в распределительных сетях
- •4.1Задачи при модернизации распределительного электросетевого комплекса.
- •4.2 Направления реализации научно-технической политики.
- •4.3 Модернизация кабельных линий в распределительных сетях.
- •4.4 Модернизация воздушных линий в распределительных сетях.
- •4.4.1 Целесообразность повсеместного перехода в воздушных сетях 10 кВ с оголенного провода на изолированный.
- •4.5 Системам управления сетями –асу, важный элемент транспорта электроэнергии.
- •5 Высокие технологии на службе эффективности
- •5.1 От распределения к генерации.
- •5.3 Минимизация времени нарушения электроснабжения.
- •5.4 Нормальный режим.
- •5.5 Аварийный режим.
- •5.6 Послеаварийный режим.
- •Заключение
4.4.1 Целесообразность повсеместного перехода в воздушных сетях 10 кВ с оголенного провода на изолированный.
Повсеместный переход в воздушных распредсетях 6-10 кВ на защищенный провод однозначно нецелесообразен. Строительство ВЛЗ, которые, как более дорогое конструктивное решение, оправданно в первую очередь в стесненных условиях.
К таким условиям относятся случаи строительства линий в населенной или лесистой местности, а также к ним можно отнести места, где высокую стоимость имеет сама отчуждаемая под строительство линий земля. Именно там ВЛЗ имеют ощутимые эксплуатационно-технические преимущества перед ВЛ с неизолированными проводами по меньшей повреждаемости, надежности электроснабжения потребителей, безопасности, габаритам. На открытых пространствах, которыми богата наша Россия, ВЛ с неизолированными проводами при качественно исполненной линейной изоляции с применением современных устройств грозозащиты по надежности ни в чем не будут уступать ВЛЗ, а стоимость их будет существенно ниже. Что касается использования в воздушных ЛЭП 10(6)кВ защищенных или «голых» проводов, то, здесь нужно обдуманное, взвешенное решение и, главное, экономически оправданное. Ведь применение более дорогостоящего защищенного провода влечет за собой и ряд проблем (например, грозозащита), на решение которых необходимы дополнительные приспособления и аппараты. А это, в свою очередь, ведет к значительному удорожанию стоимости ЛЭП. Я уверен, что каждый из вариантов применения - защищенных или «голых» проводов займет свою нишу. Защищенные провода значительно снижают возможность отключения линий в результате внешних воздействий и погодных условий. Линии, выполненные защищенными проводами, окупаются значительно быстрее (при определенных условиях, конечно), чем линии с голыми проводами. Применяя защищенные провода, сетевые компании не только повысят надежность сетей и уменьшат потери, но и увеличат выручку от продажи электроэнергии.
4.5 Системам управления сетями –асу, важный элемент транспорта электроэнергии.
При этом есть два направления - разработка систем АИИС КУЭ, а также систем SCADA (телемеханики). Изучая опыт эксплуатации и управления сетями некоторых зарубежных электросетевых компаний. В частности, системой управления распределением электроэнергии и эксплуатацией электрических сетей компании EDF Energy (Великобритания), которая построена на программно-техническом комплексе ENMAC (корпорации General Electric), а также с аналогичной системой компании Progress Energy (США), использующей комплекс G/Technology (корпорации Intergraph). Выяснили, что основным условием является консолидация функциональных возможностей всех систем: автоматизации подстанций (АСУ ТП, телемеханика) АИИС КУЭ, геоинформационной системы (ГИС) и других с целью формирования единой автоматизированной системы техно-логичнеского управления (АСТУ) электрическими сетями компании.
Исторически система учета электроэнергии и система телемеханики развивались изолированно, что было обусловлено уровнем технического исполнения этих устройств. На сегодняшний день это тупиковый путь. Альтернативы объединению этих двух систем, нет. Система АСУ должна быть единая. Все новые энергообъекты строятся именно по такому принципу.
Высокие темпы роста электросетевого комплекса в сочетании со значительной площадью, которую охватывают электрические сети на сегодняшний день, приводит к сложности управления и обслуживания сетевого хозяйства. Задача эта является комплексной: с одной стороны, обслуживающий персонал сетевой компании должен поддерживать качество электроснабжения, обеспечивая своевременные переключения, с другой - восстанавливать элементы сети, поврежденные по разным причинам. В рыночных условиях, когда рост и усложнение сети необходимы для того, чтобы снабжать электроэнергией максимальное количество предприятий, но при этом необходимо минимизировать затраты, зарубежные компании все чаще и чаще идут по пути замены человека на искусственный интеллект. Так, широкое применение находят разработки в области децентрализованного управления сетью, автоматического ввода резервного питания, автоматической локализации поврежденного участка с передачей информации и месте повреждения на пульт диспетчера. Внедрение таких систем позволяет свести к минимуму участие человека в процессе управления сетью, в частности, в ряде случаев отпадает необходимость выезда оперативных бригад для ручного ввода