Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ТИПОВОЙ РАСЧЁТ ПО ВЕКТОРНОЙ АЛГЕБРЕ.doc
Скачиваний:
3
Добавлен:
22.11.2019
Размер:
2.05 Mб
Скачать

Вариант № 9 – Мумлева Екатерина

1. Найти разложение вектора по векторам:

.

2. Проверить, коллинеарны ли векторы , если

.

3. Даны векторы: и число .

Найти:

а) при каких значениях и векторы компланарны;

б) длину и направляющие косинусы вектора ;

в) вектор , который перпендикулярен векторам .

4. Даны векторы: и число .

Вычислить:

а) скалярное произведение векторов ;

б) модуль векторного произведения ;

в) работу, совершаемую силой на пути ;

г) проекцию вектора на вектор ;

д) площадь треугольника, построенного на векторах , если начало вектора помещено

в конец вектора .

5. Даны координаты вершин пирамиды A1 A2 A3 A4 : A1(–2, 0, –4), A2(–1, 7, 1),

A3(4, –8, –4), A4 (1, –4, 6). Найти:

а) ; б) площадь грани A1 A2 A3; в) ;

г) ; д) объём пирамиды.

6. Найти проекцию вектора на ось, определяемую вектором , если

и заданы разложением по взаимно перпендикулярным ортам и .

7. Найти неизвестную координату вектора , если составляет острый угол с осью,

одноименной неизвестной координате, и задан модуль вектора .

8. Найти модуль вектора , если .

9. Задан вектор силы и координаты точек: т. A (1, –2, 1) и т. B (1, 1, 1).

Найти:

а) работу заданной силы по перемещению тела из точки A в точку B;

б) модуль момента силы , приложенной в точке A, относительно точки B.

10. Вычислить проекции вектора на оси координат, если A (–4, –2, 0),

B (–1, –2, –4), C (3, –2, 1).

ТИПОВОЙ РАСЧЁТ ПО ВЕКТОРНОЙ АЛГЕБРЕ

Вариант № 10 – Пономарёва Дарья

1. Найти разложение вектора по векторам:

.

2. Проверить, коллинеарны ли векторы , если

.

3. Даны векторы: и число .

Найти:

а) при каких значениях и векторы компланарны;

б) длину и направляющие косинусы вектора ;

в) вектор , который перпендикулярен векторам .

4. Даны векторы: и число .

Вычислить:

а) скалярное произведение векторов ;

б) модуль векторного произведения ;

в) работу, совершаемую силой на пути ;

г) проекцию вектора на вектор ;

д) площадь треугольника, построенного на векторах , если начало вектора помещено

в конец вектора .

5. Даны координаты вершин пирамиды A1 A2 A3 A4 : A1(14, 4, 5), A2(–5, –3, 2),

A3(–2, –6, –3), A4 (–2, 2, –1). Найти:

а) ; б) площадь грани A1 A2 A3; в) ;

г) ; д) объём пирамиды.

6. Найти проекцию вектора на ось, определяемую вектором , если

и заданы разложением по взаимно перпендикулярным ортам и .

7. Найти неизвестную координату вектора , если составляет острый угол с осью,

одноименной неизвестной координате, и задан модуль вектора .

8. Найти модуль вектора , если .

9. Задан вектор силы и координаты точек: т. A (–2, –1, 0) и т. B (5, 2, –1).

Найти:

а) работу заданной силы по перемещению тела из точки A в точку B;

б) модуль момента силы , приложенной в точке A, относительно точки B.

10. Вычислить проекции вектора на оси координат, если A (5, 3, –1),

B (5, 2, 0), C (6, 4, –1).

ТИПОВОЙ РАСЧЁТ ПО ВЕКТОРНОЙ АЛГЕБРЕ