
Лабораторная работа №4 Определение отношения теплоемкостей по скорости звука в газе.
Студент должен знать: уравнение Клапейрона-Менделеева, первое начало термодинамики, выражение для внутренней энергии идеального газа через число степеней свободы, виды теплоемкостей, значения молярных теплоемкостей при изопроцессах (V=const, p=const, T=const) и при адиабатическом процессе, уравнение Пуассона для адиабатического процесса, природу звука в газе, расчетную формулу для нахождения по скорости звука в газе, способы измерения скорости звука по резонансу в воздушном столбе.
Студент должен уметь: работать с электроприборами, измерять скорость звука по резонансу в воздушном столбе.
Краткая теория Теплоемкость газов.
При термодинамическом равновесии состояние газа в целом может характеризоваться тремя параметрами: давлением P, объемом V и температурой Т.
Соотношение, связывающее между собой эти величины, называется уравнением состояния газа. Для идеального газа таковым является уравнение Клапейрона - Менделеева, которое для данной массы газа m имеет вид:
,
где - молярная масса газа,
R- универсальная газовая постоянная.
При равновесном переходе газа из одного состояния в другое, т.е. при термодинамическом процессе, должно выполниться первое начало термодинамики, которое можно сформулировать следующим образом:
количество теплоты dQ, переданное газу, идет на изменение его внутренней энергии dU и на работу dA, совершаемую газом против внешних сил: dQ = dU + dA
Элементарная работа dA=pdV, а внутренняя энергия одного киломоля идеального газа определяется по формуле
,
(1)
где i - число степеней свободы молекулы газа,
Для одноатомных молекул i=3 (только 3 поступательных степени свободы); для двухатомных i=5 (3 поступательных и 2 вращательных); для трех и более атомных i=6 (3 поступательных и 3 вращательных).
Теплоёмкостью С называется величина, равная отношению сообщенного телу при нагревании количества теплоты dQ к вызванному этим процессом изменению температуры dT:
Различают удельную теплоемкость Cуд – теплоёмкость одного килограмма газа в молярную С - теплоёмкость одного киломоля газа. Эти теплоёмкости связаны между собой равенством:
Теплоемкости для одного и того же газа не являются постоянными величинами, а зависят от характера процесса, при котором происходит нагревание газа, т.к. одному и тому же изменению температуры dT могут соответствовать различные значения работы dA.
Рассмотрим основные изопроцессы, протекающие в одном киломоле идеального газа и найдем соответствующие им теплоёмкости.
а) Изохорический процесс (V= const)
В этом случае dV=0, следовательно dA=0, и всё подводимое к газу количество теплоты идет на увеличение его внутренней энергии dU:
dQ = dU.
Тогда молярная теплоемкость при постоянном объёме, учитывая (I), равна:
.
(2)
б) Изобарический процесс (p = const)
В этом случае молярная теплоемкость
.
(3)
Из уравнения состояния газа для одного киломоля имеем:
.
(4)
Т.к, p = const,то dp =0 и pdV=RdT. (4а)
Подставляя (4а) в (3) и заменяя dU
согласно (2) на
,
получим окончательно:
.
(5)
в) Изотермический процесс (T = const)
В
этом случае dT
=0
и dQ
= dA,т.е.
все подводимое количество теплоты вдет
на совершение газом работы, а его
внутренняя энергия остается постоянной.
Т.к. температура при этом не изменяется,
то молярная теплоёмкость равна
.
Адиабатический процесс (dQ =0, dU + dA =0) – процесс, происходящий при отсутствии теплообмена между газом и окружающей средой. Т.к. при этом dQ =0,то молярная теплоёмкость равна нулю.
Выведем уравнение адиабатического процесса (уравнение Пуассона).
dA = -dU или pdV = -CvdT. (6)
Разделив равенство (4) на (6), учитывая (5),получим:
или
,
(7)
где
-
отношение теплоемкостей, называемое
показателем адиабаты.
Если вместо Ср и Сv подставить в выражение для их значения через число степеней свободы идеального газа i, то получим:
.
(8)
Интегрируя и потенцируя уравнение (7), получим уравнение Пуассона:
.
(9)
В данной работе определяется отношение для воздуха по скорости звука в нем.